mirror of
https://github.com/Grasscutters/mitmproxy.git
synced 2024-11-23 00:01:36 +00:00
add tnetstring unicode type
This commit is contained in:
parent
684b4b5130
commit
48ee3a553e
@ -1,375 +0,0 @@
|
||||
# imported from the tnetstring project: https://github.com/rfk/tnetstring
|
||||
#
|
||||
# Copyright (c) 2011 Ryan Kelly
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in
|
||||
# all copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
# THE SOFTWARE.
|
||||
"""
|
||||
tnetstring: data serialization using typed netstrings
|
||||
======================================================
|
||||
|
||||
|
||||
This is a data serialization library. It's a lot like JSON but it uses a
|
||||
new syntax called "typed netstrings" that Zed has proposed for use in the
|
||||
Mongrel2 webserver. It's designed to be simpler and easier to implement
|
||||
than JSON, with a happy consequence of also being faster in many cases.
|
||||
|
||||
An ordinary netstring is a blob of data prefixed with its length and postfixed
|
||||
with a sanity-checking comma. The string "hello world" encodes like this::
|
||||
|
||||
11:hello world,
|
||||
|
||||
Typed netstrings add other datatypes by replacing the comma with a type tag.
|
||||
Here's the integer 12345 encoded as a tnetstring::
|
||||
|
||||
5:12345#
|
||||
|
||||
And here's the list [12345,True,0] which mixes integers and bools::
|
||||
|
||||
19:5:12345#4:true!1:0#]
|
||||
|
||||
Simple enough? This module gives you the following functions:
|
||||
|
||||
:dump: dump an object as a tnetstring to a file
|
||||
:dumps: dump an object as a tnetstring to a string
|
||||
:load: load a tnetstring-encoded object from a file
|
||||
:loads: load a tnetstring-encoded object from a string
|
||||
:pop: pop a tnetstring-encoded object from the front of a string
|
||||
|
||||
Note that since parsing a tnetstring requires reading all the data into memory
|
||||
at once, there's no efficiency gain from using the file-based versions of these
|
||||
functions. They're only here so you can use load() to read precisely one
|
||||
item from a file or socket without consuming any extra data.
|
||||
|
||||
By default tnetstrings work only with byte strings, not unicode. If you want
|
||||
unicode strings then pass an optional encoding to the various functions,
|
||||
like so::
|
||||
|
||||
>>> print(repr(tnetstring.loads("2:\\xce\\xb1,")))
|
||||
'\\xce\\xb1'
|
||||
>>>
|
||||
>>> print(repr(tnetstring.loads("2:\\xce\\xb1,","utf8")))
|
||||
u'\u03b1'
|
||||
|
||||
"""
|
||||
from collections import deque
|
||||
|
||||
import six
|
||||
|
||||
__ver_major__ = 0
|
||||
__ver_minor__ = 2
|
||||
__ver_patch__ = 0
|
||||
__ver_sub__ = ""
|
||||
__version__ = "%d.%d.%d%s" % (
|
||||
__ver_major__, __ver_minor__, __ver_patch__, __ver_sub__)
|
||||
|
||||
|
||||
def dumps(value):
|
||||
"""
|
||||
This function dumps a python object as a tnetstring.
|
||||
"""
|
||||
# This uses a deque to collect output fragments in reverse order,
|
||||
# then joins them together at the end. It's measurably faster
|
||||
# than creating all the intermediate strings.
|
||||
# If you're reading this to get a handle on the tnetstring format,
|
||||
# consider the _gdumps() function instead; it's a standard top-down
|
||||
# generator that's simpler to understand but much less efficient.
|
||||
q = deque()
|
||||
_rdumpq(q, 0, value)
|
||||
return b''.join(q)
|
||||
|
||||
|
||||
def dump(value, file_handle):
|
||||
"""
|
||||
This function dumps a python object as a tnetstring and
|
||||
writes it to the given file.
|
||||
"""
|
||||
file_handle.write(dumps(value))
|
||||
|
||||
|
||||
def _rdumpq(q, size, value):
|
||||
"""
|
||||
Dump value as a tnetstring, to a deque instance, last chunks first.
|
||||
|
||||
This function generates the tnetstring representation of the given value,
|
||||
pushing chunks of the output onto the given deque instance. It pushes
|
||||
the last chunk first, then recursively generates more chunks.
|
||||
|
||||
When passed in the current size of the string in the queue, it will return
|
||||
the new size of the string in the queue.
|
||||
|
||||
Operating last-chunk-first makes it easy to calculate the size written
|
||||
for recursive structures without having to build their representation as
|
||||
a string. This is measurably faster than generating the intermediate
|
||||
strings, especially on deeply nested structures.
|
||||
"""
|
||||
write = q.appendleft
|
||||
if value is None:
|
||||
write(b'0:~')
|
||||
return size + 3
|
||||
elif value is True:
|
||||
write(b'4:true!')
|
||||
return size + 7
|
||||
elif value is False:
|
||||
write(b'5:false!')
|
||||
return size + 8
|
||||
elif isinstance(value, six.integer_types):
|
||||
data = str(value).encode()
|
||||
ldata = len(data)
|
||||
span = str(ldata).encode()
|
||||
write(b'#')
|
||||
write(data)
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 2 + len(span) + ldata
|
||||
elif isinstance(value, float):
|
||||
# Use repr() for float rather than str().
|
||||
# It round-trips more accurately.
|
||||
# Probably unnecessary in later python versions that
|
||||
# use David Gay's ftoa routines.
|
||||
data = repr(value).encode()
|
||||
ldata = len(data)
|
||||
span = str(ldata).encode()
|
||||
write(b'^')
|
||||
write(data)
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 2 + len(span) + ldata
|
||||
elif isinstance(value, bytes):
|
||||
lvalue = len(value)
|
||||
span = str(lvalue).encode()
|
||||
write(b',')
|
||||
write(value)
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 2 + len(span) + lvalue
|
||||
elif isinstance(value, (list, tuple)):
|
||||
write(b']')
|
||||
init_size = size = size + 1
|
||||
for item in reversed(value):
|
||||
size = _rdumpq(q, size, item)
|
||||
span = str(size - init_size).encode()
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 1 + len(span)
|
||||
elif isinstance(value, dict):
|
||||
write(b'}')
|
||||
init_size = size = size + 1
|
||||
for (k, v) in value.items():
|
||||
size = _rdumpq(q, size, v)
|
||||
size = _rdumpq(q, size, k)
|
||||
span = str(size - init_size).encode()
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 1 + len(span)
|
||||
else:
|
||||
raise ValueError("unserializable object: {} ({})".format(value, type(value)))
|
||||
|
||||
|
||||
def _gdumps(value):
|
||||
"""
|
||||
Generate fragments of value dumped as a tnetstring.
|
||||
|
||||
This is the naive dumping algorithm, implemented as a generator so that
|
||||
it's easy to pass to "".join() without building a new list.
|
||||
|
||||
This is mainly here for comparison purposes; the _rdumpq version is
|
||||
measurably faster as it doesn't have to build intermediate strins.
|
||||
"""
|
||||
if value is None:
|
||||
yield b'0:~'
|
||||
elif value is True:
|
||||
yield b'4:true!'
|
||||
elif value is False:
|
||||
yield b'5:false!'
|
||||
elif isinstance(value, six.integer_types):
|
||||
data = str(value).encode()
|
||||
yield str(len(data)).encode()
|
||||
yield b':'
|
||||
yield data
|
||||
yield b'#'
|
||||
elif isinstance(value, float):
|
||||
data = repr(value).encode()
|
||||
yield str(len(data)).encode()
|
||||
yield b':'
|
||||
yield data
|
||||
yield b'^'
|
||||
elif isinstance(value, bytes):
|
||||
yield str(len(value)).encode()
|
||||
yield b':'
|
||||
yield value
|
||||
yield b','
|
||||
elif isinstance(value, (list, tuple)):
|
||||
sub = []
|
||||
for item in value:
|
||||
sub.extend(_gdumps(item))
|
||||
sub = b''.join(sub)
|
||||
yield str(len(sub)).encode()
|
||||
yield b':'
|
||||
yield sub
|
||||
yield b']'
|
||||
elif isinstance(value, (dict,)):
|
||||
sub = []
|
||||
for (k, v) in value.items():
|
||||
sub.extend(_gdumps(k))
|
||||
sub.extend(_gdumps(v))
|
||||
sub = b''.join(sub)
|
||||
yield str(len(sub)).encode()
|
||||
yield b':'
|
||||
yield sub
|
||||
yield b'}'
|
||||
else:
|
||||
raise ValueError("unserializable object")
|
||||
|
||||
|
||||
def loads(string):
|
||||
"""
|
||||
This function parses a tnetstring into a python object.
|
||||
"""
|
||||
# No point duplicating effort here. In the C-extension version,
|
||||
# loads() is measurably faster then pop() since it can avoid
|
||||
# the overhead of building a second string.
|
||||
return pop(string)[0]
|
||||
|
||||
|
||||
def load(file_handle):
|
||||
"""load(file) -> object
|
||||
|
||||
This function reads a tnetstring from a file and parses it into a
|
||||
python object. The file must support the read() method, and this
|
||||
function promises not to read more data than necessary.
|
||||
"""
|
||||
# Read the length prefix one char at a time.
|
||||
# Note that the netstring spec explicitly forbids padding zeros.
|
||||
c = file_handle.read(1)
|
||||
if not c.isdigit():
|
||||
raise ValueError("not a tnetstring: missing or invalid length prefix")
|
||||
datalen = ord(c) - ord('0')
|
||||
c = file_handle.read(1)
|
||||
if datalen != 0:
|
||||
while c.isdigit():
|
||||
datalen = (10 * datalen) + (ord(c) - ord('0'))
|
||||
if datalen > 999999999:
|
||||
errmsg = "not a tnetstring: absurdly large length prefix"
|
||||
raise ValueError(errmsg)
|
||||
c = file_handle.read(1)
|
||||
if c != b':':
|
||||
raise ValueError("not a tnetstring: missing or invalid length prefix")
|
||||
# Now we can read and parse the payload.
|
||||
# This repeats the dispatch logic of pop() so we can avoid
|
||||
# re-constructing the outermost tnetstring.
|
||||
data = file_handle.read(datalen)
|
||||
if len(data) != datalen:
|
||||
raise ValueError("not a tnetstring: length prefix too big")
|
||||
tns_type = file_handle.read(1)
|
||||
if tns_type == b',':
|
||||
return data
|
||||
if tns_type == b'#':
|
||||
try:
|
||||
return int(data)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: invalid integer literal")
|
||||
if tns_type == b'^':
|
||||
try:
|
||||
return float(data)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: invalid float literal")
|
||||
if tns_type == b'!':
|
||||
if data == b'true':
|
||||
return True
|
||||
elif data == b'false':
|
||||
return False
|
||||
else:
|
||||
raise ValueError("not a tnetstring: invalid boolean literal")
|
||||
if tns_type == b'~':
|
||||
if data:
|
||||
raise ValueError("not a tnetstring: invalid null literal")
|
||||
return None
|
||||
if tns_type == b']':
|
||||
l = []
|
||||
while data:
|
||||
item, data = pop(data)
|
||||
l.append(item)
|
||||
return l
|
||||
if tns_type == b'}':
|
||||
d = {}
|
||||
while data:
|
||||
key, data = pop(data)
|
||||
val, data = pop(data)
|
||||
d[key] = val
|
||||
return d
|
||||
raise ValueError("unknown type tag")
|
||||
|
||||
|
||||
def pop(string):
|
||||
"""pop(string,encoding='utf_8') -> (object, remain)
|
||||
|
||||
This function parses a tnetstring into a python object.
|
||||
It returns a tuple giving the parsed object and a string
|
||||
containing any unparsed data from the end of the string.
|
||||
"""
|
||||
# Parse out data length, type and remaining string.
|
||||
try:
|
||||
dlen, rest = string.split(b':', 1)
|
||||
dlen = int(dlen)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: missing or invalid length prefix: {}".format(string))
|
||||
try:
|
||||
data, tns_type, remain = rest[:dlen], rest[dlen:dlen + 1], rest[dlen + 1:]
|
||||
except IndexError:
|
||||
# This fires if len(rest) < dlen, meaning we don't need
|
||||
# to further validate that data is the right length.
|
||||
raise ValueError("not a tnetstring: invalid length prefix: {}".format(dlen))
|
||||
# Parse the data based on the type tag.
|
||||
if tns_type == b',':
|
||||
return data, remain
|
||||
if tns_type == b'#':
|
||||
try:
|
||||
return int(data), remain
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: invalid integer literal: {}".format(data))
|
||||
if tns_type == b'^':
|
||||
try:
|
||||
return float(data), remain
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: invalid float literal: {}".format(data))
|
||||
if tns_type == b'!':
|
||||
if data == b'true':
|
||||
return True, remain
|
||||
elif data == b'false':
|
||||
return False, remain
|
||||
else:
|
||||
raise ValueError("not a tnetstring: invalid boolean literal: {}".format(data))
|
||||
if tns_type == b'~':
|
||||
if data:
|
||||
raise ValueError("not a tnetstring: invalid null literal")
|
||||
return None, remain
|
||||
if tns_type == b']':
|
||||
l = []
|
||||
while data:
|
||||
item, data = pop(data)
|
||||
l.append(item)
|
||||
return (l, remain)
|
||||
if tns_type == b'}':
|
||||
d = {}
|
||||
while data:
|
||||
key, data = pop(data)
|
||||
val, data = pop(data)
|
||||
d[key] = val
|
||||
return d, remain
|
||||
raise ValueError("unknown type tag: {}".format(tns_type))
|
@ -1,237 +0,0 @@
|
||||
"""
|
||||
tnetstring: data serialization using typed netstrings
|
||||
======================================================
|
||||
|
||||
This is a custom Python 3 implementation of tnetstrings.
|
||||
Compared to other implementations, the main difference
|
||||
is the conversion of dictionary keys to str.
|
||||
|
||||
An ordinary tnetstring is a blob of data prefixed with its length and postfixed
|
||||
with its type. Here are some examples:
|
||||
|
||||
>>> tnetstring.dumps("hello world")
|
||||
11:hello world,
|
||||
>>> tnetstring.dumps(12345)
|
||||
5:12345#
|
||||
>>> tnetstring.dumps([12345, True, 0])
|
||||
19:5:12345#4:true!1:0#]
|
||||
|
||||
This module gives you the following functions:
|
||||
|
||||
:dump: dump an object as a tnetstring to a file
|
||||
:dumps: dump an object as a tnetstring to a string
|
||||
:load: load a tnetstring-encoded object from a file
|
||||
:loads: load a tnetstring-encoded object from a string
|
||||
|
||||
Note that since parsing a tnetstring requires reading all the data into memory
|
||||
at once, there's no efficiency gain from using the file-based versions of these
|
||||
functions. They're only here so you can use load() to read precisely one
|
||||
item from a file or socket without consuming any extra data.
|
||||
|
||||
The tnetstrings specification explicitly states that strings are binary blobs
|
||||
and forbids the use of unicode at the protocol level.
|
||||
**This implementation decodes dictionary keys as surrogate-escaped ASCII**,
|
||||
all other strings are returned as plain bytes.
|
||||
|
||||
:Copyright: (c) 2012-2013 by Ryan Kelly <ryan@rfk.id.au>.
|
||||
:Copyright: (c) 2014 by Carlo Pires <carlopires@gmail.com>.
|
||||
:Copyright: (c) 2016 by Maximilian Hils <tnetstring3@maximilianhils.com>.
|
||||
|
||||
:License: MIT
|
||||
"""
|
||||
|
||||
import collections
|
||||
from typing import io, Union, Tuple
|
||||
|
||||
TSerializable = Union[None, bool, int, float, bytes, list, tuple, dict]
|
||||
|
||||
|
||||
def dumps(value: TSerializable) -> bytes:
|
||||
"""
|
||||
This function dumps a python object as a tnetstring.
|
||||
"""
|
||||
# This uses a deque to collect output fragments in reverse order,
|
||||
# then joins them together at the end. It's measurably faster
|
||||
# than creating all the intermediate strings.
|
||||
q = collections.deque()
|
||||
_rdumpq(q, 0, value)
|
||||
return b''.join(q)
|
||||
|
||||
|
||||
def dump(value: TSerializable, file_handle: io.BinaryIO) -> None:
|
||||
"""
|
||||
This function dumps a python object as a tnetstring and
|
||||
writes it to the given file.
|
||||
"""
|
||||
file_handle.write(dumps(value))
|
||||
|
||||
|
||||
def _rdumpq(q: collections.deque, size: int, value: TSerializable) -> int:
|
||||
"""
|
||||
Dump value as a tnetstring, to a deque instance, last chunks first.
|
||||
|
||||
This function generates the tnetstring representation of the given value,
|
||||
pushing chunks of the output onto the given deque instance. It pushes
|
||||
the last chunk first, then recursively generates more chunks.
|
||||
|
||||
When passed in the current size of the string in the queue, it will return
|
||||
the new size of the string in the queue.
|
||||
|
||||
Operating last-chunk-first makes it easy to calculate the size written
|
||||
for recursive structures without having to build their representation as
|
||||
a string. This is measurably faster than generating the intermediate
|
||||
strings, especially on deeply nested structures.
|
||||
"""
|
||||
write = q.appendleft
|
||||
if value is None:
|
||||
write(b'0:~')
|
||||
return size + 3
|
||||
elif value is True:
|
||||
write(b'4:true!')
|
||||
return size + 7
|
||||
elif value is False:
|
||||
write(b'5:false!')
|
||||
return size + 8
|
||||
elif isinstance(value, int):
|
||||
data = str(value).encode()
|
||||
ldata = len(data)
|
||||
span = str(ldata).encode()
|
||||
write(b'%s:%s#' % (span, data))
|
||||
return size + 2 + len(span) + ldata
|
||||
elif isinstance(value, float):
|
||||
# Use repr() for float rather than str().
|
||||
# It round-trips more accurately.
|
||||
# Probably unnecessary in later python versions that
|
||||
# use David Gay's ftoa routines.
|
||||
data = repr(value).encode()
|
||||
ldata = len(data)
|
||||
span = str(ldata).encode()
|
||||
write(b'%s:%s^' % (span, data))
|
||||
return size + 2 + len(span) + ldata
|
||||
elif isinstance(value, bytes):
|
||||
lvalue = len(value)
|
||||
span = str(lvalue).encode()
|
||||
write(b'%s:%s,' % (span, value))
|
||||
return size + 2 + len(span) + lvalue
|
||||
elif isinstance(value, (list, tuple)):
|
||||
write(b']')
|
||||
init_size = size = size + 1
|
||||
for item in reversed(value):
|
||||
size = _rdumpq(q, size, item)
|
||||
span = str(size - init_size).encode()
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 1 + len(span)
|
||||
elif isinstance(value, dict):
|
||||
write(b'}')
|
||||
init_size = size = size + 1
|
||||
for (k, v) in value.items():
|
||||
if isinstance(k, str):
|
||||
k = k.encode("ascii", "strict")
|
||||
size = _rdumpq(q, size, v)
|
||||
size = _rdumpq(q, size, k)
|
||||
span = str(size - init_size).encode()
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 1 + len(span)
|
||||
else:
|
||||
raise ValueError("unserializable object: {} ({})".format(value, type(value)))
|
||||
|
||||
|
||||
def loads(string: bytes) -> TSerializable:
|
||||
"""
|
||||
This function parses a tnetstring into a python object.
|
||||
"""
|
||||
return pop(string)[0]
|
||||
|
||||
|
||||
def load(file_handle: io.BinaryIO) -> TSerializable:
|
||||
"""load(file) -> object
|
||||
|
||||
This function reads a tnetstring from a file and parses it into a
|
||||
python object. The file must support the read() method, and this
|
||||
function promises not to read more data than necessary.
|
||||
"""
|
||||
# Read the length prefix one char at a time.
|
||||
# Note that the netstring spec explicitly forbids padding zeros.
|
||||
c = file_handle.read(1)
|
||||
data_length = b""
|
||||
while c.isdigit():
|
||||
data_length += c
|
||||
if len(data_length) > 9:
|
||||
raise ValueError("not a tnetstring: absurdly large length prefix")
|
||||
c = file_handle.read(1)
|
||||
if c != b":":
|
||||
raise ValueError("not a tnetstring: missing or invalid length prefix")
|
||||
|
||||
data = file_handle.read(int(data_length))
|
||||
data_type = file_handle.read(1)[0]
|
||||
|
||||
return parse(data_type, data)
|
||||
|
||||
|
||||
def parse(data_type: int, data: bytes) -> TSerializable:
|
||||
if data_type == ord(b','):
|
||||
return data
|
||||
if data_type == ord(b'#'):
|
||||
try:
|
||||
return int(data)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: invalid integer literal: {}".format(data))
|
||||
if data_type == ord(b'^'):
|
||||
try:
|
||||
return float(data)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: invalid float literal: {}".format(data))
|
||||
if data_type == ord(b'!'):
|
||||
if data == b'true':
|
||||
return True
|
||||
elif data == b'false':
|
||||
return False
|
||||
else:
|
||||
raise ValueError("not a tnetstring: invalid boolean literal: {}".format(data))
|
||||
if data_type == ord(b'~'):
|
||||
if data:
|
||||
raise ValueError("not a tnetstring: invalid null literal")
|
||||
return None
|
||||
if data_type == ord(b']'):
|
||||
l = []
|
||||
while data:
|
||||
item, data = pop(data)
|
||||
l.append(item)
|
||||
return l
|
||||
if data_type == ord(b'}'):
|
||||
d = {}
|
||||
while data:
|
||||
key, data = pop(data)
|
||||
if isinstance(key, bytes):
|
||||
key = key.decode("ascii", "strict")
|
||||
val, data = pop(data)
|
||||
d[key] = val
|
||||
return d
|
||||
raise ValueError("unknown type tag: {}".format(data_type))
|
||||
|
||||
|
||||
def pop(data: bytes) -> Tuple[TSerializable, bytes]:
|
||||
"""
|
||||
This function parses a tnetstring into a python object.
|
||||
It returns a tuple giving the parsed object and a string
|
||||
containing any unparsed data from the end of the string.
|
||||
"""
|
||||
# Parse out data length, type and remaining string.
|
||||
try:
|
||||
length, data = data.split(b':', 1)
|
||||
length = int(length)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: missing or invalid length prefix: {}".format(data))
|
||||
try:
|
||||
data, data_type, remain = data[:length], data[length], data[length + 1:]
|
||||
except IndexError:
|
||||
# This fires if len(data) < dlen, meaning we don't need
|
||||
# to further validate that data is the right length.
|
||||
raise ValueError("not a tnetstring: invalid length prefix: {}".format(length))
|
||||
# Parse the data based on the type tag.
|
||||
return parse(data_type, data), remain
|
||||
|
||||
|
||||
__all__ = ["dump", "dumps", "load", "loads", "pop"]
|
@ -1,133 +0,0 @@
|
||||
import unittest
|
||||
import random
|
||||
import math
|
||||
import io
|
||||
from . import tnetstring
|
||||
import struct
|
||||
|
||||
MAXINT = 2 ** (struct.Struct('i').size * 8 - 1) - 1
|
||||
|
||||
FORMAT_EXAMPLES = {
|
||||
b'0:}': {},
|
||||
b'0:]': [],
|
||||
b'51:5:hello,39:11:12345678901#4:this,4:true!0:~4:\x00\x00\x00\x00,]}':
|
||||
{'hello': [12345678901, b'this', True, None, b'\x00\x00\x00\x00']},
|
||||
b'5:12345#': 12345,
|
||||
b'12:this is cool,': b'this is cool',
|
||||
b'0:,': b'',
|
||||
b'0:~': None,
|
||||
b'4:true!': True,
|
||||
b'5:false!': False,
|
||||
b'10:\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00,': b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00',
|
||||
b'24:5:12345#5:67890#5:xxxxx,]': [12345, 67890, b'xxxxx'],
|
||||
b'18:3:0.1^3:0.2^3:0.3^]': [0.1, 0.2, 0.3],
|
||||
b'243:238:233:228:223:218:213:208:203:198:193:188:183:178:173:168:163:158:153:148:143:138:133:128:123:118:113:108:103:99:95:91:87:83:79:75:71:67:63:59:55:51:47:43:39:35:31:27:23:19:15:11:hello-there,]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]': [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[b'hello-there']]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
|
||||
}
|
||||
|
||||
def get_random_object(random=random, depth=0):
|
||||
"""Generate a random serializable object."""
|
||||
# The probability of generating a scalar value increases as the depth increase.
|
||||
# This ensures that we bottom out eventually.
|
||||
if random.randint(depth,10) <= 4:
|
||||
what = random.randint(0,1)
|
||||
if what == 0:
|
||||
n = random.randint(0,10)
|
||||
l = []
|
||||
for _ in range(n):
|
||||
l.append(get_random_object(random,depth+1))
|
||||
return l
|
||||
if what == 1:
|
||||
n = random.randint(0,10)
|
||||
d = {}
|
||||
for _ in range(n):
|
||||
n = random.randint(0,100)
|
||||
k = str([random.randint(32,126) for _ in range(n)])
|
||||
d[k] = get_random_object(random,depth+1)
|
||||
return d
|
||||
else:
|
||||
what = random.randint(0,4)
|
||||
if what == 0:
|
||||
return None
|
||||
if what == 1:
|
||||
return True
|
||||
if what == 2:
|
||||
return False
|
||||
if what == 3:
|
||||
if random.randint(0,1) == 0:
|
||||
return random.randint(0,MAXINT)
|
||||
else:
|
||||
return -1 * random.randint(0,MAXINT)
|
||||
n = random.randint(0,100)
|
||||
return bytes([random.randint(32,126) for _ in range(n)])
|
||||
|
||||
class Test_Format(unittest.TestCase):
|
||||
def test_roundtrip_format_examples(self):
|
||||
for data, expect in FORMAT_EXAMPLES.items():
|
||||
self.assertEqual(expect,tnetstring.loads(data))
|
||||
self.assertEqual(expect,tnetstring.loads(tnetstring.dumps(expect)))
|
||||
self.assertEqual((expect,b''),tnetstring.pop(data))
|
||||
|
||||
def test_roundtrip_format_random(self):
|
||||
for _ in range(500):
|
||||
v = get_random_object()
|
||||
self.assertEqual(v,tnetstring.loads(tnetstring.dumps(v)))
|
||||
self.assertEqual((v,b""),tnetstring.pop(tnetstring.dumps(v)))
|
||||
|
||||
def test_unicode_handling(self):
|
||||
with self.assertRaises(ValueError):
|
||||
tnetstring.dumps("hello")
|
||||
self.assertEqual(tnetstring.dumps("hello".encode()),b"5:hello,")
|
||||
self.assertEqual(type(tnetstring.loads(b"5:hello,")),bytes)
|
||||
|
||||
def test_roundtrip_format_unicode(self):
|
||||
for _ in range(500):
|
||||
v = get_random_object()
|
||||
self.assertEqual(v,tnetstring.loads(tnetstring.dumps(v)))
|
||||
self.assertEqual((v,b''),tnetstring.pop(tnetstring.dumps(v)))
|
||||
|
||||
def test_roundtrip_big_integer(self):
|
||||
i1 = math.factorial(30000)
|
||||
s = tnetstring.dumps(i1)
|
||||
i2 = tnetstring.loads(s)
|
||||
self.assertEqual(i1, i2)
|
||||
|
||||
class Test_FileLoading(unittest.TestCase):
|
||||
def test_roundtrip_file_examples(self):
|
||||
for data, expect in FORMAT_EXAMPLES.items():
|
||||
s = io.BytesIO()
|
||||
s.write(data)
|
||||
s.write(b'OK')
|
||||
s.seek(0)
|
||||
self.assertEqual(expect,tnetstring.load(s))
|
||||
self.assertEqual(b'OK',s.read())
|
||||
s = io.BytesIO()
|
||||
tnetstring.dump(expect,s)
|
||||
s.write(b'OK')
|
||||
s.seek(0)
|
||||
self.assertEqual(expect,tnetstring.load(s))
|
||||
self.assertEqual(b'OK',s.read())
|
||||
|
||||
def test_roundtrip_file_random(self):
|
||||
for _ in range(500):
|
||||
v = get_random_object()
|
||||
s = io.BytesIO()
|
||||
tnetstring.dump(v,s)
|
||||
s.write(b'OK')
|
||||
s.seek(0)
|
||||
self.assertEqual(v,tnetstring.load(s))
|
||||
self.assertEqual(b'OK',s.read())
|
||||
|
||||
def test_error_on_absurd_lengths(self):
|
||||
s = io.BytesIO()
|
||||
s.write(b'1000000000:pwned!,')
|
||||
s.seek(0)
|
||||
with self.assertRaises(ValueError):
|
||||
tnetstring.load(s)
|
||||
self.assertEqual(s.read(1),b':')
|
||||
|
||||
def suite():
|
||||
loader = unittest.TestLoader()
|
||||
suite = unittest.TestSuite()
|
||||
suite.addTest(loader.loadTestsFromTestCase(Test_Format))
|
||||
suite.addTest(loader.loadTestsFromTestCase(Test_FileLoading))
|
||||
return suite
|
@ -1,8 +1,254 @@
|
||||
"""
|
||||
tnetstring: data serialization using typed netstrings
|
||||
======================================================
|
||||
|
||||
This is a custom Python 3 implementation of tnetstrings.
|
||||
Compared to other implementations, the main difference
|
||||
is that this implementation supports a custom unicode datatype.
|
||||
|
||||
An ordinary tnetstring is a blob of data prefixed with its length and postfixed
|
||||
with its type. Here are some examples:
|
||||
|
||||
>>> tnetstring.dumps("hello world")
|
||||
11:hello world,
|
||||
>>> tnetstring.dumps(12345)
|
||||
5:12345#
|
||||
>>> tnetstring.dumps([12345, True, 0])
|
||||
19:5:12345#4:true!1:0#]
|
||||
|
||||
This module gives you the following functions:
|
||||
|
||||
:dump: dump an object as a tnetstring to a file
|
||||
:dumps: dump an object as a tnetstring to a string
|
||||
:load: load a tnetstring-encoded object from a file
|
||||
:loads: load a tnetstring-encoded object from a string
|
||||
|
||||
Note that since parsing a tnetstring requires reading all the data into memory
|
||||
at once, there's no efficiency gain from using the file-based versions of these
|
||||
functions. They're only here so you can use load() to read precisely one
|
||||
item from a file or socket without consuming any extra data.
|
||||
|
||||
The tnetstrings specification explicitly states that strings are binary blobs
|
||||
and forbids the use of unicode at the protocol level.
|
||||
**This implementation decodes dictionary keys as surrogate-escaped ASCII**,
|
||||
all other strings are returned as plain bytes.
|
||||
|
||||
:Copyright: (c) 2012-2013 by Ryan Kelly <ryan@rfk.id.au>.
|
||||
:Copyright: (c) 2014 by Carlo Pires <carlopires@gmail.com>.
|
||||
:Copyright: (c) 2016 by Maximilian Hils <tnetstring3@maximilianhils.com>.
|
||||
|
||||
:License: MIT
|
||||
"""
|
||||
|
||||
import collections
|
||||
import six
|
||||
from typing import io, Union, Tuple # noqa
|
||||
|
||||
if six.PY2:
|
||||
from .py2.tnetstring import load, loads, dump, dumps, pop
|
||||
else:
|
||||
from .py3.tnetstring import load, loads, dump, dumps, pop
|
||||
TSerializable = Union[None, bool, int, float, bytes, list, tuple, dict]
|
||||
|
||||
__all__ = ["load", "loads", "dump", "dumps", "pop"]
|
||||
|
||||
def dumps(value):
|
||||
# type: (TSerializable) -> bytes
|
||||
"""
|
||||
This function dumps a python object as a tnetstring.
|
||||
"""
|
||||
# This uses a deque to collect output fragments in reverse order,
|
||||
# then joins them together at the end. It's measurably faster
|
||||
# than creating all the intermediate strings.
|
||||
q = collections.deque()
|
||||
_rdumpq(q, 0, value)
|
||||
return b''.join(q)
|
||||
|
||||
|
||||
def dump(value, file_handle):
|
||||
# type: (TSerializable, io.BinaryIO) -> None
|
||||
"""
|
||||
This function dumps a python object as a tnetstring and
|
||||
writes it to the given file.
|
||||
"""
|
||||
file_handle.write(dumps(value))
|
||||
|
||||
|
||||
def _rdumpq(q, size, value):
|
||||
# type: (collections.deque, int, TSerializable) -> int
|
||||
"""
|
||||
Dump value as a tnetstring, to a deque instance, last chunks first.
|
||||
|
||||
This function generates the tnetstring representation of the given value,
|
||||
pushing chunks of the output onto the given deque instance. It pushes
|
||||
the last chunk first, then recursively generates more chunks.
|
||||
|
||||
When passed in the current size of the string in the queue, it will return
|
||||
the new size of the string in the queue.
|
||||
|
||||
Operating last-chunk-first makes it easy to calculate the size written
|
||||
for recursive structures without having to build their representation as
|
||||
a string. This is measurably faster than generating the intermediate
|
||||
strings, especially on deeply nested structures.
|
||||
"""
|
||||
write = q.appendleft
|
||||
if value is None:
|
||||
write(b'0:~')
|
||||
return size + 3
|
||||
elif value is True:
|
||||
write(b'4:true!')
|
||||
return size + 7
|
||||
elif value is False:
|
||||
write(b'5:false!')
|
||||
return size + 8
|
||||
elif isinstance(value, int):
|
||||
data = str(value).encode()
|
||||
ldata = len(data)
|
||||
span = str(ldata).encode()
|
||||
write(b'%s:%s#' % (span, data))
|
||||
return size + 2 + len(span) + ldata
|
||||
elif isinstance(value, float):
|
||||
# Use repr() for float rather than str().
|
||||
# It round-trips more accurately.
|
||||
# Probably unnecessary in later python versions that
|
||||
# use David Gay's ftoa routines.
|
||||
data = repr(value).encode()
|
||||
ldata = len(data)
|
||||
span = str(ldata).encode()
|
||||
write(b'%s:%s^' % (span, data))
|
||||
return size + 2 + len(span) + ldata
|
||||
elif isinstance(value, bytes):
|
||||
data = value
|
||||
ldata = len(data)
|
||||
span = str(ldata).encode()
|
||||
write(b'%s:%s,' % (span, data))
|
||||
return size + 2 + len(span) + ldata
|
||||
elif isinstance(value, six.text_type):
|
||||
data = value.encode()
|
||||
ldata = len(data)
|
||||
span = str(ldata).encode()
|
||||
write(b'%s:%s;' % (span, data))
|
||||
return size + 2 + len(span) + ldata
|
||||
elif isinstance(value, (list, tuple)):
|
||||
write(b']')
|
||||
init_size = size = size + 1
|
||||
for item in reversed(value):
|
||||
size = _rdumpq(q, size, item)
|
||||
span = str(size - init_size).encode()
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 1 + len(span)
|
||||
elif isinstance(value, dict):
|
||||
write(b'}')
|
||||
init_size = size = size + 1
|
||||
for (k, v) in value.items():
|
||||
if isinstance(k, str):
|
||||
k = k.encode("ascii", "strict")
|
||||
size = _rdumpq(q, size, v)
|
||||
size = _rdumpq(q, size, k)
|
||||
span = str(size - init_size).encode()
|
||||
write(b':')
|
||||
write(span)
|
||||
return size + 1 + len(span)
|
||||
else:
|
||||
raise ValueError("unserializable object: {} ({})".format(value, type(value)))
|
||||
|
||||
|
||||
def loads(string):
|
||||
# type: (bytes) -> TSerializable
|
||||
"""
|
||||
This function parses a tnetstring into a python object.
|
||||
"""
|
||||
return pop(string)[0]
|
||||
|
||||
|
||||
def load(file_handle):
|
||||
# type: (io.BinaryIO) -> TSerializable
|
||||
"""load(file) -> object
|
||||
|
||||
This function reads a tnetstring from a file and parses it into a
|
||||
python object. The file must support the read() method, and this
|
||||
function promises not to read more data than necessary.
|
||||
"""
|
||||
# Read the length prefix one char at a time.
|
||||
# Note that the netstring spec explicitly forbids padding zeros.
|
||||
c = file_handle.read(1)
|
||||
data_length = b""
|
||||
while c.isdigit():
|
||||
data_length += c
|
||||
if len(data_length) > 9:
|
||||
raise ValueError("not a tnetstring: absurdly large length prefix")
|
||||
c = file_handle.read(1)
|
||||
if c != b":":
|
||||
raise ValueError("not a tnetstring: missing or invalid length prefix")
|
||||
|
||||
data = file_handle.read(int(data_length))
|
||||
data_type = file_handle.read(1)[0]
|
||||
|
||||
return parse(data_type, data)
|
||||
|
||||
|
||||
def parse(data_type, data):
|
||||
# type: (int, bytes) -> TSerializable
|
||||
if data_type == ord(b','):
|
||||
return data
|
||||
if data_type == ord(b';'):
|
||||
return data.decode()
|
||||
if data_type == ord(b'#'):
|
||||
try:
|
||||
return int(data)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: invalid integer literal: {}".format(data))
|
||||
if data_type == ord(b'^'):
|
||||
try:
|
||||
return float(data)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: invalid float literal: {}".format(data))
|
||||
if data_type == ord(b'!'):
|
||||
if data == b'true':
|
||||
return True
|
||||
elif data == b'false':
|
||||
return False
|
||||
else:
|
||||
raise ValueError("not a tnetstring: invalid boolean literal: {}".format(data))
|
||||
if data_type == ord(b'~'):
|
||||
if data:
|
||||
raise ValueError("not a tnetstring: invalid null literal")
|
||||
return None
|
||||
if data_type == ord(b']'):
|
||||
l = []
|
||||
while data:
|
||||
item, data = pop(data)
|
||||
l.append(item)
|
||||
return l
|
||||
if data_type == ord(b'}'):
|
||||
d = {}
|
||||
while data:
|
||||
key, data = pop(data)
|
||||
if isinstance(key, bytes):
|
||||
key = key.decode("ascii", "strict")
|
||||
val, data = pop(data)
|
||||
d[key] = val
|
||||
return d
|
||||
raise ValueError("unknown type tag: {}".format(data_type))
|
||||
|
||||
|
||||
def pop(data):
|
||||
# type: (bytes) -> Tuple[TSerializable, bytes]
|
||||
"""
|
||||
This function parses a tnetstring into a python object.
|
||||
It returns a tuple giving the parsed object and a string
|
||||
containing any unparsed data from the end of the string.
|
||||
"""
|
||||
# Parse out data length, type and remaining string.
|
||||
try:
|
||||
length, data = data.split(b':', 1)
|
||||
length = int(length)
|
||||
except ValueError:
|
||||
raise ValueError("not a tnetstring: missing or invalid length prefix: {}".format(data))
|
||||
try:
|
||||
data, data_type, remain = data[:length], data[length], data[length + 1:]
|
||||
except IndexError:
|
||||
# This fires if len(data) < dlen, meaning we don't need
|
||||
# to further validate that data is the right length.
|
||||
raise ValueError("not a tnetstring: invalid length prefix: {}".format(length))
|
||||
# Parse the data based on the type tag.
|
||||
return parse(data_type, data), remain
|
||||
|
||||
|
||||
__all__ = ["dump", "dumps", "load", "loads", "pop"]
|
||||
|
Loading…
Reference in New Issue
Block a user