Nagram/TMessagesProj/jni/voip/webrtc/call/simulated_network.cc

292 lines
10 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
/*
* Copyright 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "call/simulated_network.h"
#include <algorithm>
#include <cmath>
#include <utility>
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr TimeDelta kDefaultProcessDelay = TimeDelta::Millis(5);
} // namespace
CoDelSimulation::CoDelSimulation() = default;
CoDelSimulation::~CoDelSimulation() = default;
bool CoDelSimulation::DropDequeuedPacket(Timestamp now,
Timestamp enqueing_time,
DataSize packet_size,
DataSize queue_size) {
constexpr TimeDelta kWindow = TimeDelta::Millis(100);
constexpr TimeDelta kDelayThreshold = TimeDelta::Millis(5);
constexpr TimeDelta kDropCountMemory = TimeDelta::Millis(1600);
constexpr DataSize kMaxPacketSize = DataSize::Bytes(1500);
// Compensates for process interval in simulation; not part of standard CoDel.
TimeDelta queuing_time = now - enqueing_time - kDefaultProcessDelay;
if (queue_size < kMaxPacketSize || queuing_time < kDelayThreshold) {
enter_drop_state_at_ = Timestamp::PlusInfinity();
state_ = kNormal;
return false;
}
switch (state_) {
case kNormal:
enter_drop_state_at_ = now + kWindow;
state_ = kPending;
return false;
case kPending:
if (now >= enter_drop_state_at_) {
state_ = kDropping;
// Starting the drop counter with the drops made during the most recent
// drop state period.
drop_count_ = drop_count_ - previous_drop_count_;
if (now >= last_drop_at_ + kDropCountMemory)
drop_count_ = 0;
previous_drop_count_ = drop_count_;
last_drop_at_ = now;
++drop_count_;
return true;
}
return false;
case kDropping:
TimeDelta drop_delay = kWindow / sqrt(static_cast<double>(drop_count_));
Timestamp next_drop_at = last_drop_at_ + drop_delay;
if (now >= next_drop_at) {
if (queue_size - packet_size < kMaxPacketSize)
state_ = kPending;
last_drop_at_ = next_drop_at;
++drop_count_;
return true;
}
return false;
}
}
SimulatedNetwork::SimulatedNetwork(Config config, uint64_t random_seed)
: random_(random_seed), bursting_(false) {
SetConfig(config);
}
SimulatedNetwork::~SimulatedNetwork() = default;
void SimulatedNetwork::SetConfig(const Config& config) {
MutexLock lock(&config_lock_);
config_state_.config = config; // Shallow copy of the struct.
double prob_loss = config.loss_percent / 100.0;
if (config_state_.config.avg_burst_loss_length == -1) {
// Uniform loss
config_state_.prob_loss_bursting = prob_loss;
config_state_.prob_start_bursting = prob_loss;
} else {
// Lose packets according to a gilbert-elliot model.
int avg_burst_loss_length = config.avg_burst_loss_length;
int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss));
RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length)
<< "For a total packet loss of " << config.loss_percent
<< "%% then"
" avg_burst_loss_length must be "
<< min_avg_burst_loss_length + 1 << " or higher.";
config_state_.prob_loss_bursting = (1.0 - 1.0 / avg_burst_loss_length);
config_state_.prob_start_bursting =
prob_loss / (1 - prob_loss) / avg_burst_loss_length;
}
}
void SimulatedNetwork::UpdateConfig(
std::function<void(BuiltInNetworkBehaviorConfig*)> config_modifier) {
MutexLock lock(&config_lock_);
config_modifier(&config_state_.config);
}
void SimulatedNetwork::PauseTransmissionUntil(int64_t until_us) {
MutexLock lock(&config_lock_);
config_state_.pause_transmission_until_us = until_us;
}
bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
ConfigState state = GetConfigState();
UpdateCapacityQueue(state, packet.send_time_us);
packet.size += state.config.packet_overhead;
if (state.config.queue_length_packets > 0 &&
capacity_link_.size() >= state.config.queue_length_packets) {
// Too many packet on the link, drop this one.
return false;
}
// Set arrival time = send time for now; actual arrival time will be
// calculated in UpdateCapacityQueue.
queue_size_bytes_ += packet.size;
capacity_link_.push({packet, packet.send_time_us});
if (!next_process_time_us_) {
next_process_time_us_ = packet.send_time_us + kDefaultProcessDelay.us();
}
return true;
}
absl::optional<int64_t> SimulatedNetwork::NextDeliveryTimeUs() const {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
return next_process_time_us_;
}
void SimulatedNetwork::UpdateCapacityQueue(ConfigState state,
int64_t time_now_us) {
bool needs_sort = false;
// Catch for thread races.
if (time_now_us < last_capacity_link_visit_us_.value_or(time_now_us))
return;
int64_t time_us = last_capacity_link_visit_us_.value_or(time_now_us);
// Check the capacity link first.
while (!capacity_link_.empty()) {
int64_t time_until_front_exits_us = 0;
if (state.config.link_capacity_kbps > 0) {
int64_t remaining_bits =
capacity_link_.front().packet.size * 8 - pending_drain_bits_;
RTC_DCHECK(remaining_bits > 0);
// Division rounded up - packet not delivered until its last bit is.
time_until_front_exits_us =
(1000 * remaining_bits + state.config.link_capacity_kbps - 1) /
state.config.link_capacity_kbps;
}
if (time_us + time_until_front_exits_us > time_now_us) {
// Packet at front will not exit yet. Will not enter here on infinite
// capacity(=0) so no special handling needed.
pending_drain_bits_ +=
((time_now_us - time_us) * state.config.link_capacity_kbps) / 1000;
break;
}
if (state.config.link_capacity_kbps > 0) {
pending_drain_bits_ +=
(time_until_front_exits_us * state.config.link_capacity_kbps) / 1000;
} else {
// Enough to drain the whole queue.
pending_drain_bits_ = queue_size_bytes_ * 8;
}
// Time to get this packet.
PacketInfo packet = capacity_link_.front();
capacity_link_.pop();
time_us += time_until_front_exits_us;
if (state.config.codel_active_queue_management) {
while (!capacity_link_.empty() &&
codel_controller_.DropDequeuedPacket(
Timestamp::Micros(time_us),
Timestamp::Micros(capacity_link_.front().packet.send_time_us),
DataSize::Bytes(capacity_link_.front().packet.size),
DataSize::Bytes(queue_size_bytes_))) {
PacketInfo dropped = capacity_link_.front();
capacity_link_.pop();
queue_size_bytes_ -= dropped.packet.size;
dropped.arrival_time_us = PacketDeliveryInfo::kNotReceived;
delay_link_.emplace_back(dropped);
}
}
RTC_DCHECK(time_us >= packet.packet.send_time_us);
packet.arrival_time_us =
std::max(state.pause_transmission_until_us, time_us);
queue_size_bytes_ -= packet.packet.size;
pending_drain_bits_ -= packet.packet.size * 8;
RTC_DCHECK(pending_drain_bits_ >= 0);
// Drop packets at an average rate of |state.config.loss_percent| with
// and average loss burst length of |state.config.avg_burst_loss_length|.
if ((bursting_ && random_.Rand<double>() < state.prob_loss_bursting) ||
(!bursting_ && random_.Rand<double>() < state.prob_start_bursting)) {
bursting_ = true;
packet.arrival_time_us = PacketDeliveryInfo::kNotReceived;
} else {
bursting_ = false;
int64_t arrival_time_jitter_us = std::max(
random_.Gaussian(state.config.queue_delay_ms * 1000,
state.config.delay_standard_deviation_ms * 1000),
0.0);
// If reordering is not allowed then adjust arrival_time_jitter
// to make sure all packets are sent in order.
int64_t last_arrival_time_us =
delay_link_.empty() ? -1 : delay_link_.back().arrival_time_us;
if (!state.config.allow_reordering && !delay_link_.empty() &&
packet.arrival_time_us + arrival_time_jitter_us <
last_arrival_time_us) {
arrival_time_jitter_us = last_arrival_time_us - packet.arrival_time_us;
}
packet.arrival_time_us += arrival_time_jitter_us;
if (packet.arrival_time_us >= last_arrival_time_us) {
last_arrival_time_us = packet.arrival_time_us;
} else {
needs_sort = true;
}
}
delay_link_.emplace_back(packet);
}
last_capacity_link_visit_us_ = time_now_us;
// Cannot save unused capacity for later.
pending_drain_bits_ = std::min(pending_drain_bits_, queue_size_bytes_ * 8);
if (needs_sort) {
// Packet(s) arrived out of order, make sure list is sorted.
std::sort(delay_link_.begin(), delay_link_.end(),
[](const PacketInfo& p1, const PacketInfo& p2) {
return p1.arrival_time_us < p2.arrival_time_us;
});
}
}
SimulatedNetwork::ConfigState SimulatedNetwork::GetConfigState() const {
MutexLock lock(&config_lock_);
return config_state_;
}
std::vector<PacketDeliveryInfo> SimulatedNetwork::DequeueDeliverablePackets(
int64_t receive_time_us) {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
UpdateCapacityQueue(GetConfigState(), receive_time_us);
std::vector<PacketDeliveryInfo> packets_to_deliver;
// Check the extra delay queue.
while (!delay_link_.empty() &&
receive_time_us >= delay_link_.front().arrival_time_us) {
PacketInfo packet_info = delay_link_.front();
packets_to_deliver.emplace_back(
PacketDeliveryInfo(packet_info.packet, packet_info.arrival_time_us));
delay_link_.pop_front();
}
if (!delay_link_.empty()) {
next_process_time_us_ = delay_link_.front().arrival_time_us;
} else if (!capacity_link_.empty()) {
next_process_time_us_ = receive_time_us + kDefaultProcessDelay.us();
} else {
next_process_time_us_.reset();
}
return packets_to_deliver;
}
} // namespace webrtc