244 lines
11 KiB
C
244 lines
11 KiB
C
|
/* libFLAC - Free Lossless Audio Codec library
|
||
|
* Copyright (C) 2000-2009 Josh Coalson
|
||
|
* Copyright (C) 2011-2016 Xiph.Org Foundation
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* - Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* - Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* - Neither the name of the Xiph.org Foundation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived from
|
||
|
* this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
# include <config.h>
|
||
|
#endif
|
||
|
|
||
|
#include "private/cpu.h"
|
||
|
|
||
|
#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
||
|
#ifndef FLAC__NO_ASM
|
||
|
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
|
||
|
#include "private/fixed.h"
|
||
|
#ifdef FLAC__SSSE3_SUPPORTED
|
||
|
|
||
|
#include <tmmintrin.h> /* SSSE3 */
|
||
|
#include <math.h>
|
||
|
#include "private/macros.h"
|
||
|
#include "share/compat.h"
|
||
|
#include "FLAC/assert.h"
|
||
|
|
||
|
#ifdef FLAC__CPU_IA32
|
||
|
#define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
|
||
|
#else
|
||
|
#define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
|
||
|
#endif
|
||
|
|
||
|
FLAC__SSE_TARGET("ssse3")
|
||
|
uint32_t FLAC__fixed_compute_best_predictor_intrin_ssse3(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
|
||
|
{
|
||
|
FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
|
||
|
uint32_t i, order;
|
||
|
|
||
|
__m128i total_err0, total_err1, total_err2;
|
||
|
|
||
|
{
|
||
|
FLAC__int32 itmp;
|
||
|
__m128i last_error;
|
||
|
|
||
|
last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0
|
||
|
itmp = data[-2];
|
||
|
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
|
||
|
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1
|
||
|
itmp -= data[-3];
|
||
|
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
|
||
|
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2
|
||
|
itmp -= data[-3] - data[-4];
|
||
|
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
|
||
|
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3
|
||
|
|
||
|
total_err0 = total_err1 = _mm_setzero_si128();
|
||
|
for(i = 0; i < data_len; i++) {
|
||
|
__m128i err0, err1;
|
||
|
err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0
|
||
|
err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0
|
||
|
#if 1 /* OPT_SSE */
|
||
|
err1 = _mm_sub_epi32(err1, last_error);
|
||
|
last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2
|
||
|
err1 = _mm_sub_epi32(err1, last_error);
|
||
|
last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1
|
||
|
err1 = _mm_sub_epi32(err1, last_error);
|
||
|
last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0
|
||
|
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
|
||
|
#else
|
||
|
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1
|
||
|
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0
|
||
|
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
|
||
|
#endif
|
||
|
last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3
|
||
|
|
||
|
err0 = _mm_abs_epi32(err0);
|
||
|
err1 = _mm_abs_epi32(err1);
|
||
|
|
||
|
total_err0 = _mm_add_epi32(total_err0, err0); // 0 0 0 te0
|
||
|
total_err1 = _mm_add_epi32(total_err1, err1); // te1 te2 te3 te4
|
||
|
}
|
||
|
}
|
||
|
|
||
|
total_error_0 = _mm_cvtsi128_si32(total_err0);
|
||
|
total_err2 = total_err1; // te1 te2 te3 te4
|
||
|
total_err1 = _mm_srli_si128(total_err1, 8); // 0 0 te1 te2
|
||
|
total_error_4 = _mm_cvtsi128_si32(total_err2);
|
||
|
total_error_2 = _mm_cvtsi128_si32(total_err1);
|
||
|
total_err2 = _mm_srli_si128(total_err2, 4); // 0 te1 te2 te3
|
||
|
total_err1 = _mm_srli_si128(total_err1, 4); // 0 0 0 te1
|
||
|
total_error_3 = _mm_cvtsi128_si32(total_err2);
|
||
|
total_error_1 = _mm_cvtsi128_si32(total_err1);
|
||
|
|
||
|
/* prefer higher order */
|
||
|
if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
|
||
|
order = 0;
|
||
|
else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
|
||
|
order = 1;
|
||
|
else if(total_error_2 < flac_min(total_error_3, total_error_4))
|
||
|
order = 2;
|
||
|
else if(total_error_3 < total_error_4)
|
||
|
order = 3;
|
||
|
else
|
||
|
order = 4;
|
||
|
|
||
|
/* Estimate the expected number of bits per residual signal sample. */
|
||
|
/* 'total_error*' is linearly related to the variance of the residual */
|
||
|
/* signal, so we use it directly to compute E(|x|) */
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
|
||
|
|
||
|
residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
|
||
|
residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
|
||
|
residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
|
||
|
residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
|
||
|
residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
|
||
|
|
||
|
return order;
|
||
|
}
|
||
|
|
||
|
FLAC__SSE_TARGET("ssse3")
|
||
|
uint32_t FLAC__fixed_compute_best_predictor_wide_intrin_ssse3(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
|
||
|
{
|
||
|
FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
|
||
|
uint32_t i, order;
|
||
|
|
||
|
__m128i total_err0, total_err1, total_err3;
|
||
|
|
||
|
{
|
||
|
FLAC__int32 itmp;
|
||
|
__m128i last_error, zero = _mm_setzero_si128();
|
||
|
|
||
|
last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0
|
||
|
itmp = data[-2];
|
||
|
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
|
||
|
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1
|
||
|
itmp -= data[-3];
|
||
|
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
|
||
|
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2
|
||
|
itmp -= data[-3] - data[-4];
|
||
|
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
|
||
|
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3
|
||
|
|
||
|
total_err0 = total_err1 = total_err3 = _mm_setzero_si128();
|
||
|
for(i = 0; i < data_len; i++) {
|
||
|
__m128i err0, err1;
|
||
|
err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0
|
||
|
err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0
|
||
|
#if 1 /* OPT_SSE */
|
||
|
err1 = _mm_sub_epi32(err1, last_error);
|
||
|
last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2
|
||
|
err1 = _mm_sub_epi32(err1, last_error);
|
||
|
last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1
|
||
|
err1 = _mm_sub_epi32(err1, last_error);
|
||
|
last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0
|
||
|
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
|
||
|
#else
|
||
|
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1
|
||
|
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0
|
||
|
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
|
||
|
#endif
|
||
|
last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3
|
||
|
|
||
|
err0 = _mm_abs_epi32(err0);
|
||
|
err1 = _mm_abs_epi32(err1); // |e1| |e2| |e3| |e4|
|
||
|
|
||
|
total_err0 = _mm_add_epi64(total_err0, err0); // 0 te0
|
||
|
err0 = _mm_unpacklo_epi32(err1, zero); // 0 |e3| 0 |e4|
|
||
|
err1 = _mm_unpackhi_epi32(err1, zero); // 0 |e1| 0 |e2|
|
||
|
total_err3 = _mm_add_epi64(total_err3, err0); // te3 te4
|
||
|
total_err1 = _mm_add_epi64(total_err1, err1); // te1 te2
|
||
|
}
|
||
|
}
|
||
|
|
||
|
m128i_to_i64(total_error_0, total_err0);
|
||
|
m128i_to_i64(total_error_4, total_err3);
|
||
|
m128i_to_i64(total_error_2, total_err1);
|
||
|
total_err3 = _mm_srli_si128(total_err3, 8); // 0 te3
|
||
|
total_err1 = _mm_srli_si128(total_err1, 8); // 0 te1
|
||
|
m128i_to_i64(total_error_3, total_err3);
|
||
|
m128i_to_i64(total_error_1, total_err1);
|
||
|
|
||
|
/* prefer higher order */
|
||
|
if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
|
||
|
order = 0;
|
||
|
else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
|
||
|
order = 1;
|
||
|
else if(total_error_2 < flac_min(total_error_3, total_error_4))
|
||
|
order = 2;
|
||
|
else if(total_error_3 < total_error_4)
|
||
|
order = 3;
|
||
|
else
|
||
|
order = 4;
|
||
|
|
||
|
/* Estimate the expected number of bits per residual signal sample. */
|
||
|
/* 'total_error*' is linearly related to the variance of the residual */
|
||
|
/* signal, so we use it directly to compute E(|x|) */
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
|
||
|
FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
|
||
|
|
||
|
residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
|
||
|
residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
|
||
|
residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
|
||
|
residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
|
||
|
residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
|
||
|
|
||
|
return order;
|
||
|
}
|
||
|
|
||
|
#endif /* FLAC__SSSE3_SUPPORTED */
|
||
|
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
|
||
|
#endif /* FLAC__NO_ASM */
|
||
|
#endif /* FLAC__INTEGER_ONLY_LIBRARY */
|