Nagram/TMessagesProj/jni/voip/webrtc/absl/base/internal/sysinfo.cc

509 lines
16 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/sysinfo.h"
#include "absl/base/attributes.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <fcntl.h>
#include <pthread.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#ifdef __linux__
#include <sys/syscall.h>
#endif
#if defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/sysctl.h>
#endif
#if defined(__myriad2__)
#include <rtems.h>
#endif
#include <string.h>
2022-03-11 16:49:54 +00:00
2020-08-14 16:58:22 +00:00
#include <cassert>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <thread> // NOLINT(build/c++11)
#include <utility>
#include <vector>
#include "absl/base/call_once.h"
2022-03-11 16:49:54 +00:00
#include "absl/base/config.h"
2020-08-14 16:58:22 +00:00
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/unscaledcycleclock.h"
2022-03-11 16:49:54 +00:00
#include "absl/base/thread_annotations.h"
2020-08-14 16:58:22 +00:00
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
2022-03-11 16:49:54 +00:00
namespace {
#if defined(_WIN32)
// Returns number of bits set in `bitMask`
DWORD Win32CountSetBits(ULONG_PTR bitMask) {
for (DWORD bitSetCount = 0; ; ++bitSetCount) {
if (bitMask == 0) return bitSetCount;
bitMask &= bitMask - 1;
}
}
// Returns the number of logical CPUs using GetLogicalProcessorInformation(), or
// 0 if the number of processors is not available or can not be computed.
// https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getlogicalprocessorinformation
int Win32NumCPUs() {
#pragma comment(lib, "kernel32.lib")
using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;
DWORD info_size = sizeof(Info);
Info* info(static_cast<Info*>(malloc(info_size)));
if (info == nullptr) return 0;
bool success = GetLogicalProcessorInformation(info, &info_size);
if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
free(info);
info = static_cast<Info*>(malloc(info_size));
if (info == nullptr) return 0;
success = GetLogicalProcessorInformation(info, &info_size);
}
DWORD logicalProcessorCount = 0;
if (success) {
Info* ptr = info;
DWORD byteOffset = 0;
while (byteOffset + sizeof(Info) <= info_size) {
switch (ptr->Relationship) {
case RelationProcessorCore:
logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask);
break;
case RelationNumaNode:
case RelationCache:
case RelationProcessorPackage:
// Ignore other entries
break;
default:
// Ignore unknown entries
break;
}
byteOffset += sizeof(Info);
ptr++;
}
}
free(info);
return logicalProcessorCount;
}
#endif
} // namespace
2020-08-14 16:58:22 +00:00
static int GetNumCPUs() {
#if defined(__myriad2__)
return 1;
2022-03-11 16:49:54 +00:00
#elif defined(_WIN32)
const unsigned hardware_concurrency = Win32NumCPUs();
return hardware_concurrency ? hardware_concurrency : 1;
#elif defined(_AIX)
return sysconf(_SC_NPROCESSORS_ONLN);
2020-08-14 16:58:22 +00:00
#else
// Other possibilities:
// - Read /sys/devices/system/cpu/online and use cpumask_parse()
// - sysconf(_SC_NPROCESSORS_ONLN)
return std::thread::hardware_concurrency();
#endif
}
#if defined(_WIN32)
static double GetNominalCPUFrequency() {
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \
!WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
// UWP apps don't have access to the registry and currently don't provide an
// API informing about CPU nominal frequency.
return 1.0;
#else
#pragma comment(lib, "advapi32.lib") // For Reg* functions.
HKEY key;
// Use the Reg* functions rather than the SH functions because shlwapi.dll
// pulls in gdi32.dll which makes process destruction much more costly.
if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,
"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
KEY_READ, &key) == ERROR_SUCCESS) {
DWORD type = 0;
DWORD data = 0;
DWORD data_size = sizeof(data);
auto result = RegQueryValueExA(key, "~MHz", 0, &type,
reinterpret_cast<LPBYTE>(&data), &data_size);
RegCloseKey(key);
if (result == ERROR_SUCCESS && type == REG_DWORD &&
data_size == sizeof(data)) {
return data * 1e6; // Value is MHz.
}
}
return 1.0;
#endif // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP
}
#elif defined(CTL_HW) && defined(HW_CPU_FREQ)
static double GetNominalCPUFrequency() {
unsigned freq;
size_t size = sizeof(freq);
int mib[2] = {CTL_HW, HW_CPU_FREQ};
if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
return static_cast<double>(freq);
}
return 1.0;
}
#else
// Helper function for reading a long from a file. Returns true if successful
// and the memory location pointed to by value is set to the value read.
static bool ReadLongFromFile(const char *file, long *value) {
bool ret = false;
int fd = open(file, O_RDONLY);
if (fd != -1) {
char line[1024];
char *err;
memset(line, '\0', sizeof(line));
int len = read(fd, line, sizeof(line) - 1);
if (len <= 0) {
ret = false;
} else {
const long temp_value = strtol(line, &err, 10);
if (line[0] != '\0' && (*err == '\n' || *err == '\0')) {
*value = temp_value;
ret = true;
}
}
close(fd);
}
return ret;
}
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
// Reads a monotonic time source and returns a value in
// nanoseconds. The returned value uses an arbitrary epoch, not the
// Unix epoch.
static int64_t ReadMonotonicClockNanos() {
struct timespec t;
#ifdef CLOCK_MONOTONIC_RAW
int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);
#else
int rc = clock_gettime(CLOCK_MONOTONIC, &t);
#endif
if (rc != 0) {
perror("clock_gettime() failed");
abort();
}
return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec;
}
class UnscaledCycleClockWrapperForInitializeFrequency {
public:
static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
};
struct TimeTscPair {
int64_t time; // From ReadMonotonicClockNanos().
int64_t tsc; // From UnscaledCycleClock::Now().
};
// Returns a pair of values (monotonic kernel time, TSC ticks) that
// approximately correspond to each other. This is accomplished by
// doing several reads and picking the reading with the lowest
// latency. This approach is used to minimize the probability that
// our thread was preempted between clock reads.
static TimeTscPair GetTimeTscPair() {
int64_t best_latency = std::numeric_limits<int64_t>::max();
TimeTscPair best;
for (int i = 0; i < 10; ++i) {
int64_t t0 = ReadMonotonicClockNanos();
int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();
int64_t t1 = ReadMonotonicClockNanos();
int64_t latency = t1 - t0;
if (latency < best_latency) {
best_latency = latency;
best.time = t0;
best.tsc = tsc;
}
}
return best;
}
// Measures and returns the TSC frequency by taking a pair of
// measurements approximately `sleep_nanoseconds` apart.
static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) {
auto t0 = GetTimeTscPair();
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = sleep_nanoseconds;
while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {}
auto t1 = GetTimeTscPair();
double elapsed_ticks = t1.tsc - t0.tsc;
double elapsed_time = (t1.time - t0.time) * 1e-9;
return elapsed_ticks / elapsed_time;
}
// Measures and returns the TSC frequency by calling
// MeasureTscFrequencyWithSleep(), doubling the sleep interval until the
// frequency measurement stabilizes.
static double MeasureTscFrequency() {
double last_measurement = -1.0;
int sleep_nanoseconds = 1000000; // 1 millisecond.
for (int i = 0; i < 8; ++i) {
double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);
if (measurement * 0.99 < last_measurement &&
last_measurement < measurement * 1.01) {
// Use the current measurement if it is within 1% of the
// previous measurement.
return measurement;
}
last_measurement = measurement;
sleep_nanoseconds *= 2;
}
return last_measurement;
}
#endif // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
static double GetNominalCPUFrequency() {
long freq = 0;
// Google's production kernel has a patch to export the TSC
// frequency through sysfs. If the kernel is exporting the TSC
// frequency use that. There are issues where cpuinfo_max_freq
// cannot be relied on because the BIOS may be exporting an invalid
// p-state (on x86) or p-states may be used to put the processor in
// a new mode (turbo mode). Essentially, those frequencies cannot
// always be relied upon. The same reasons apply to /proc/cpuinfo as
// well.
if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) {
return freq * 1e3; // Value is kHz.
}
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
// On these platforms, the TSC frequency is the nominal CPU
// frequency. But without having the kernel export it directly
// though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no
// other way to reliably get the TSC frequency, so we have to
// measure it ourselves. Some CPUs abuse cpuinfo_max_freq by
// exporting "fake" frequencies for implementing new features. For
// example, Intel's turbo mode is enabled by exposing a p-state
// value with a higher frequency than that of the real TSC
// rate. Because of this, we prefer to measure the TSC rate
// ourselves on i386 and x86-64.
return MeasureTscFrequency();
#else
// If CPU scaling is in effect, we want to use the *maximum*
// frequency, not whatever CPU speed some random processor happens
// to be using now.
if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
&freq)) {
return freq * 1e3; // Value is kHz.
}
return 1.0;
#endif // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
}
#endif
ABSL_CONST_INIT static once_flag init_num_cpus_once;
ABSL_CONST_INIT static int num_cpus = 0;
// NumCPUs() may be called before main() and before malloc is properly
// initialized, therefore this must not allocate memory.
int NumCPUs() {
base_internal::LowLevelCallOnce(
&init_num_cpus_once, []() { num_cpus = GetNumCPUs(); });
return num_cpus;
}
// A default frequency of 0.0 might be dangerous if it is used in division.
ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once;
ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0;
// NominalCPUFrequency() may be called before main() and before malloc is
// properly initialized, therefore this must not allocate memory.
double NominalCPUFrequency() {
base_internal::LowLevelCallOnce(
&init_nominal_cpu_frequency_once,
[]() { nominal_cpu_frequency = GetNominalCPUFrequency(); });
return nominal_cpu_frequency;
}
#if defined(_WIN32)
pid_t GetTID() {
return pid_t{GetCurrentThreadId()};
}
#elif defined(__linux__)
#ifndef SYS_gettid
#define SYS_gettid __NR_gettid
#endif
pid_t GetTID() {
return syscall(SYS_gettid);
}
#elif defined(__akaros__)
pid_t GetTID() {
// Akaros has a concept of "vcore context", which is the state the program
// is forced into when we need to make a user-level scheduling decision, or
// run a signal handler. This is analogous to the interrupt context that a
// CPU might enter if it encounters some kind of exception.
//
// There is no current thread context in vcore context, but we need to give
// a reasonable answer if asked for a thread ID (e.g., in a signal handler).
// Thread 0 always exists, so if we are in vcore context, we return that.
//
// Otherwise, we know (since we are using pthreads) that the uthread struct
// current_uthread is pointing to is the first element of a
// struct pthread_tcb, so we extract and return the thread ID from that.
//
// TODO(dcross): Akaros anticipates moving the thread ID to the uthread
// structure at some point. We should modify this code to remove the cast
// when that happens.
if (in_vcore_context())
return 0;
return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id;
}
#elif defined(__myriad2__)
pid_t GetTID() {
uint32_t tid;
rtems_task_ident(RTEMS_SELF, 0, &tid);
return tid;
}
#else
// Fallback implementation of GetTID using pthread_getspecific.
2022-03-11 16:49:54 +00:00
ABSL_CONST_INIT static once_flag tid_once;
ABSL_CONST_INIT static pthread_key_t tid_key;
ABSL_CONST_INIT static absl::base_internal::SpinLock tid_lock(
absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
2020-08-14 16:58:22 +00:00
// We set a bit per thread in this array to indicate that an ID is in
// use. ID 0 is unused because it is the default value returned by
// pthread_getspecific().
2022-03-11 16:49:54 +00:00
ABSL_CONST_INIT static std::vector<uint32_t> *tid_array
ABSL_GUARDED_BY(tid_lock) = nullptr;
2020-08-14 16:58:22 +00:00
static constexpr int kBitsPerWord = 32; // tid_array is uint32_t.
// Returns the TID to tid_array.
static void FreeTID(void *v) {
intptr_t tid = reinterpret_cast<intptr_t>(v);
int word = tid / kBitsPerWord;
uint32_t mask = ~(1u << (tid % kBitsPerWord));
absl::base_internal::SpinLockHolder lock(&tid_lock);
assert(0 <= word && static_cast<size_t>(word) < tid_array->size());
(*tid_array)[word] &= mask;
}
static void InitGetTID() {
if (pthread_key_create(&tid_key, FreeTID) != 0) {
// The logging system calls GetTID() so it can't be used here.
perror("pthread_key_create failed");
abort();
}
// Initialize tid_array.
absl::base_internal::SpinLockHolder lock(&tid_lock);
tid_array = new std::vector<uint32_t>(1);
(*tid_array)[0] = 1; // ID 0 is never-allocated.
}
// Return a per-thread small integer ID from pthread's thread-specific data.
pid_t GetTID() {
absl::call_once(tid_once, InitGetTID);
intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key));
if (tid != 0) {
return tid;
}
int bit; // tid_array[word] = 1u << bit;
size_t word;
{
// Search for the first unused ID.
absl::base_internal::SpinLockHolder lock(&tid_lock);
// First search for a word in the array that is not all ones.
word = 0;
while (word < tid_array->size() && ~(*tid_array)[word] == 0) {
++word;
}
if (word == tid_array->size()) {
tid_array->push_back(0); // No space left, add kBitsPerWord more IDs.
}
// Search for a zero bit in the word.
bit = 0;
while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) {
++bit;
}
tid = (word * kBitsPerWord) + bit;
(*tid_array)[word] |= 1u << bit; // Mark the TID as allocated.
}
if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) {
perror("pthread_setspecific failed");
abort();
}
return static_cast<pid_t>(tid);
}
#endif
2022-03-11 16:49:54 +00:00
// GetCachedTID() caches the thread ID in thread-local storage (which is a
// userspace construct) to avoid unnecessary system calls. Without this caching,
// it can take roughly 98ns, while it takes roughly 1ns with this caching.
pid_t GetCachedTID() {
#ifdef ABSL_HAVE_THREAD_LOCAL
static thread_local pid_t thread_id = GetTID();
return thread_id;
#else
return GetTID();
#endif // ABSL_HAVE_THREAD_LOCAL
}
2020-08-14 16:58:22 +00:00
} // namespace base_internal
ABSL_NAMESPACE_END
} // namespace absl