712 lines
18 KiB
C
712 lines
18 KiB
C
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This package is an SSL implementation written
|
||
|
* by Eric Young (eay@cryptsoft.com).
|
||
|
* The implementation was written so as to conform with Netscapes SSL.
|
||
|
*
|
||
|
* This library is free for commercial and non-commercial use as long as
|
||
|
* the following conditions are aheared to. The following conditions
|
||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
|
* included with this distribution is covered by the same copyright terms
|
||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
|
* the code are not to be removed.
|
||
|
* If this package is used in a product, Eric Young should be given attribution
|
||
|
* as the author of the parts of the library used.
|
||
|
* This can be in the form of a textual message at program startup or
|
||
|
* in documentation (online or textual) provided with the package.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* "This product includes cryptographic software written by
|
||
|
* Eric Young (eay@cryptsoft.com)"
|
||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
||
|
* being used are not cryptographic related :-).
|
||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
|
* the apps directory (application code) you must include an acknowledgement:
|
||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* The licence and distribution terms for any publically available version or
|
||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
|
* copied and put under another distribution licence
|
||
|
* [including the GNU Public Licence.] */
|
||
|
|
||
|
#include <openssl/bn.h>
|
||
|
|
||
|
#include <assert.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
|
||
|
|
||
|
// This file has two other implementations: x86 assembly language in
|
||
|
// asm/bn-586.pl and x86_64 inline assembly in asm/x86_64-gcc.c.
|
||
|
#if defined(OPENSSL_NO_ASM) || \
|
||
|
!(defined(OPENSSL_X86) || \
|
||
|
(defined(OPENSSL_X86_64) && (defined(__GNUC__) || defined(__clang__))))
|
||
|
|
||
|
#ifdef BN_ULLONG
|
||
|
#define mul_add(r, a, w, c) \
|
||
|
do { \
|
||
|
BN_ULLONG t; \
|
||
|
t = (BN_ULLONG)(w) * (a) + (r) + (c); \
|
||
|
(r) = Lw(t); \
|
||
|
(c) = Hw(t); \
|
||
|
} while (0)
|
||
|
|
||
|
#define mul(r, a, w, c) \
|
||
|
do { \
|
||
|
BN_ULLONG t; \
|
||
|
t = (BN_ULLONG)(w) * (a) + (c); \
|
||
|
(r) = Lw(t); \
|
||
|
(c) = Hw(t); \
|
||
|
} while (0)
|
||
|
|
||
|
#define sqr(r0, r1, a) \
|
||
|
do { \
|
||
|
BN_ULLONG t; \
|
||
|
t = (BN_ULLONG)(a) * (a); \
|
||
|
(r0) = Lw(t); \
|
||
|
(r1) = Hw(t); \
|
||
|
} while (0)
|
||
|
|
||
|
#else
|
||
|
|
||
|
#define mul_add(r, a, w, c) \
|
||
|
do { \
|
||
|
BN_ULONG high, low, ret, tmp = (a); \
|
||
|
ret = (r); \
|
||
|
BN_UMULT_LOHI(low, high, w, tmp); \
|
||
|
ret += (c); \
|
||
|
(c) = (ret < (c)) ? 1 : 0; \
|
||
|
(c) += high; \
|
||
|
ret += low; \
|
||
|
(c) += (ret < low) ? 1 : 0; \
|
||
|
(r) = ret; \
|
||
|
} while (0)
|
||
|
|
||
|
#define mul(r, a, w, c) \
|
||
|
do { \
|
||
|
BN_ULONG high, low, ret, ta = (a); \
|
||
|
BN_UMULT_LOHI(low, high, w, ta); \
|
||
|
ret = low + (c); \
|
||
|
(c) = high; \
|
||
|
(c) += (ret < low) ? 1 : 0; \
|
||
|
(r) = ret; \
|
||
|
} while (0)
|
||
|
|
||
|
#define sqr(r0, r1, a) \
|
||
|
do { \
|
||
|
BN_ULONG tmp = (a); \
|
||
|
BN_UMULT_LOHI(r0, r1, tmp, tmp); \
|
||
|
} while (0)
|
||
|
|
||
|
#endif // !BN_ULLONG
|
||
|
|
||
|
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
|
||
|
BN_ULONG w) {
|
||
|
BN_ULONG c1 = 0;
|
||
|
|
||
|
if (num == 0) {
|
||
|
return c1;
|
||
|
}
|
||
|
|
||
|
while (num & ~3) {
|
||
|
mul_add(rp[0], ap[0], w, c1);
|
||
|
mul_add(rp[1], ap[1], w, c1);
|
||
|
mul_add(rp[2], ap[2], w, c1);
|
||
|
mul_add(rp[3], ap[3], w, c1);
|
||
|
ap += 4;
|
||
|
rp += 4;
|
||
|
num -= 4;
|
||
|
}
|
||
|
|
||
|
while (num) {
|
||
|
mul_add(rp[0], ap[0], w, c1);
|
||
|
ap++;
|
||
|
rp++;
|
||
|
num--;
|
||
|
}
|
||
|
|
||
|
return c1;
|
||
|
}
|
||
|
|
||
|
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
|
||
|
BN_ULONG w) {
|
||
|
BN_ULONG c1 = 0;
|
||
|
|
||
|
if (num == 0) {
|
||
|
return c1;
|
||
|
}
|
||
|
|
||
|
while (num & ~3) {
|
||
|
mul(rp[0], ap[0], w, c1);
|
||
|
mul(rp[1], ap[1], w, c1);
|
||
|
mul(rp[2], ap[2], w, c1);
|
||
|
mul(rp[3], ap[3], w, c1);
|
||
|
ap += 4;
|
||
|
rp += 4;
|
||
|
num -= 4;
|
||
|
}
|
||
|
while (num) {
|
||
|
mul(rp[0], ap[0], w, c1);
|
||
|
ap++;
|
||
|
rp++;
|
||
|
num--;
|
||
|
}
|
||
|
return c1;
|
||
|
}
|
||
|
|
||
|
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, size_t n) {
|
||
|
if (n == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
while (n & ~3) {
|
||
|
sqr(r[0], r[1], a[0]);
|
||
|
sqr(r[2], r[3], a[1]);
|
||
|
sqr(r[4], r[5], a[2]);
|
||
|
sqr(r[6], r[7], a[3]);
|
||
|
a += 4;
|
||
|
r += 8;
|
||
|
n -= 4;
|
||
|
}
|
||
|
while (n) {
|
||
|
sqr(r[0], r[1], a[0]);
|
||
|
a++;
|
||
|
r += 2;
|
||
|
n--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef BN_ULLONG
|
||
|
BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
|
||
|
size_t n) {
|
||
|
BN_ULLONG ll = 0;
|
||
|
|
||
|
if (n == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
while (n & ~3) {
|
||
|
ll += (BN_ULLONG)a[0] + b[0];
|
||
|
r[0] = (BN_ULONG)ll;
|
||
|
ll >>= BN_BITS2;
|
||
|
ll += (BN_ULLONG)a[1] + b[1];
|
||
|
r[1] = (BN_ULONG)ll;
|
||
|
ll >>= BN_BITS2;
|
||
|
ll += (BN_ULLONG)a[2] + b[2];
|
||
|
r[2] = (BN_ULONG)ll;
|
||
|
ll >>= BN_BITS2;
|
||
|
ll += (BN_ULLONG)a[3] + b[3];
|
||
|
r[3] = (BN_ULONG)ll;
|
||
|
ll >>= BN_BITS2;
|
||
|
a += 4;
|
||
|
b += 4;
|
||
|
r += 4;
|
||
|
n -= 4;
|
||
|
}
|
||
|
while (n) {
|
||
|
ll += (BN_ULLONG)a[0] + b[0];
|
||
|
r[0] = (BN_ULONG)ll;
|
||
|
ll >>= BN_BITS2;
|
||
|
a++;
|
||
|
b++;
|
||
|
r++;
|
||
|
n--;
|
||
|
}
|
||
|
return (BN_ULONG)ll;
|
||
|
}
|
||
|
|
||
|
#else // !BN_ULLONG
|
||
|
|
||
|
BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
|
||
|
size_t n) {
|
||
|
BN_ULONG c, l, t;
|
||
|
|
||
|
if (n == 0) {
|
||
|
return (BN_ULONG)0;
|
||
|
}
|
||
|
|
||
|
c = 0;
|
||
|
while (n & ~3) {
|
||
|
t = a[0];
|
||
|
t += c;
|
||
|
c = (t < c);
|
||
|
l = t + b[0];
|
||
|
c += (l < t);
|
||
|
r[0] = l;
|
||
|
t = a[1];
|
||
|
t += c;
|
||
|
c = (t < c);
|
||
|
l = t + b[1];
|
||
|
c += (l < t);
|
||
|
r[1] = l;
|
||
|
t = a[2];
|
||
|
t += c;
|
||
|
c = (t < c);
|
||
|
l = t + b[2];
|
||
|
c += (l < t);
|
||
|
r[2] = l;
|
||
|
t = a[3];
|
||
|
t += c;
|
||
|
c = (t < c);
|
||
|
l = t + b[3];
|
||
|
c += (l < t);
|
||
|
r[3] = l;
|
||
|
a += 4;
|
||
|
b += 4;
|
||
|
r += 4;
|
||
|
n -= 4;
|
||
|
}
|
||
|
while (n) {
|
||
|
t = a[0];
|
||
|
t += c;
|
||
|
c = (t < c);
|
||
|
l = t + b[0];
|
||
|
c += (l < t);
|
||
|
r[0] = l;
|
||
|
a++;
|
||
|
b++;
|
||
|
r++;
|
||
|
n--;
|
||
|
}
|
||
|
return (BN_ULONG)c;
|
||
|
}
|
||
|
|
||
|
#endif // !BN_ULLONG
|
||
|
|
||
|
BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
|
||
|
size_t n) {
|
||
|
BN_ULONG t1, t2;
|
||
|
int c = 0;
|
||
|
|
||
|
if (n == 0) {
|
||
|
return (BN_ULONG)0;
|
||
|
}
|
||
|
|
||
|
while (n & ~3) {
|
||
|
t1 = a[0];
|
||
|
t2 = b[0];
|
||
|
r[0] = t1 - t2 - c;
|
||
|
if (t1 != t2) {
|
||
|
c = (t1 < t2);
|
||
|
}
|
||
|
t1 = a[1];
|
||
|
t2 = b[1];
|
||
|
r[1] = t1 - t2 - c;
|
||
|
if (t1 != t2) {
|
||
|
c = (t1 < t2);
|
||
|
}
|
||
|
t1 = a[2];
|
||
|
t2 = b[2];
|
||
|
r[2] = t1 - t2 - c;
|
||
|
if (t1 != t2) {
|
||
|
c = (t1 < t2);
|
||
|
}
|
||
|
t1 = a[3];
|
||
|
t2 = b[3];
|
||
|
r[3] = t1 - t2 - c;
|
||
|
if (t1 != t2) {
|
||
|
c = (t1 < t2);
|
||
|
}
|
||
|
a += 4;
|
||
|
b += 4;
|
||
|
r += 4;
|
||
|
n -= 4;
|
||
|
}
|
||
|
while (n) {
|
||
|
t1 = a[0];
|
||
|
t2 = b[0];
|
||
|
r[0] = t1 - t2 - c;
|
||
|
if (t1 != t2) {
|
||
|
c = (t1 < t2);
|
||
|
}
|
||
|
a++;
|
||
|
b++;
|
||
|
r++;
|
||
|
n--;
|
||
|
}
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
// mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0)
|
||
|
// mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0)
|
||
|
// sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0)
|
||
|
// sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0)
|
||
|
|
||
|
#ifdef BN_ULLONG
|
||
|
|
||
|
// Keep in mind that additions to multiplication result can not overflow,
|
||
|
// because its high half cannot be all-ones.
|
||
|
#define mul_add_c(a, b, c0, c1, c2) \
|
||
|
do { \
|
||
|
BN_ULONG hi; \
|
||
|
BN_ULLONG t = (BN_ULLONG)(a) * (b); \
|
||
|
t += (c0); /* no carry */ \
|
||
|
(c0) = (BN_ULONG)Lw(t); \
|
||
|
hi = (BN_ULONG)Hw(t); \
|
||
|
(c1) += (hi); \
|
||
|
if ((c1) < hi) { \
|
||
|
(c2)++; \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
#define mul_add_c2(a, b, c0, c1, c2) \
|
||
|
do { \
|
||
|
BN_ULONG hi; \
|
||
|
BN_ULLONG t = (BN_ULLONG)(a) * (b); \
|
||
|
BN_ULLONG tt = t + (c0); /* no carry */ \
|
||
|
(c0) = (BN_ULONG)Lw(tt); \
|
||
|
hi = (BN_ULONG)Hw(tt); \
|
||
|
(c1) += hi; \
|
||
|
if ((c1) < hi) { \
|
||
|
(c2)++; \
|
||
|
} \
|
||
|
t += (c0); /* no carry */ \
|
||
|
(c0) = (BN_ULONG)Lw(t); \
|
||
|
hi = (BN_ULONG)Hw(t); \
|
||
|
(c1) += hi; \
|
||
|
if ((c1) < hi) { \
|
||
|
(c2)++; \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
#define sqr_add_c(a, i, c0, c1, c2) \
|
||
|
do { \
|
||
|
BN_ULONG hi; \
|
||
|
BN_ULLONG t = (BN_ULLONG)(a)[i] * (a)[i]; \
|
||
|
t += (c0); /* no carry */ \
|
||
|
(c0) = (BN_ULONG)Lw(t); \
|
||
|
hi = (BN_ULONG)Hw(t); \
|
||
|
(c1) += hi; \
|
||
|
if ((c1) < hi) { \
|
||
|
(c2)++; \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
#define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2)
|
||
|
|
||
|
#else
|
||
|
|
||
|
// Keep in mind that additions to hi can not overflow, because the high word of
|
||
|
// a multiplication result cannot be all-ones.
|
||
|
#define mul_add_c(a, b, c0, c1, c2) \
|
||
|
do { \
|
||
|
BN_ULONG ta = (a), tb = (b); \
|
||
|
BN_ULONG lo, hi; \
|
||
|
BN_UMULT_LOHI(lo, hi, ta, tb); \
|
||
|
(c0) += lo; \
|
||
|
hi += ((c0) < lo) ? 1 : 0; \
|
||
|
(c1) += hi; \
|
||
|
(c2) += ((c1) < hi) ? 1 : 0; \
|
||
|
} while (0)
|
||
|
|
||
|
#define mul_add_c2(a, b, c0, c1, c2) \
|
||
|
do { \
|
||
|
BN_ULONG ta = (a), tb = (b); \
|
||
|
BN_ULONG lo, hi, tt; \
|
||
|
BN_UMULT_LOHI(lo, hi, ta, tb); \
|
||
|
(c0) += lo; \
|
||
|
tt = hi + (((c0) < lo) ? 1 : 0); \
|
||
|
(c1) += tt; \
|
||
|
(c2) += ((c1) < tt) ? 1 : 0; \
|
||
|
(c0) += lo; \
|
||
|
hi += (c0 < lo) ? 1 : 0; \
|
||
|
(c1) += hi; \
|
||
|
(c2) += ((c1) < hi) ? 1 : 0; \
|
||
|
} while (0)
|
||
|
|
||
|
#define sqr_add_c(a, i, c0, c1, c2) \
|
||
|
do { \
|
||
|
BN_ULONG ta = (a)[i]; \
|
||
|
BN_ULONG lo, hi; \
|
||
|
BN_UMULT_LOHI(lo, hi, ta, ta); \
|
||
|
(c0) += lo; \
|
||
|
hi += (c0 < lo) ? 1 : 0; \
|
||
|
(c1) += hi; \
|
||
|
(c2) += ((c1) < hi) ? 1 : 0; \
|
||
|
} while (0)
|
||
|
|
||
|
#define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2)
|
||
|
|
||
|
#endif // !BN_ULLONG
|
||
|
|
||
|
void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]) {
|
||
|
BN_ULONG c1, c2, c3;
|
||
|
|
||
|
c1 = 0;
|
||
|
c2 = 0;
|
||
|
c3 = 0;
|
||
|
mul_add_c(a[0], b[0], c1, c2, c3);
|
||
|
r[0] = c1;
|
||
|
c1 = 0;
|
||
|
mul_add_c(a[0], b[1], c2, c3, c1);
|
||
|
mul_add_c(a[1], b[0], c2, c3, c1);
|
||
|
r[1] = c2;
|
||
|
c2 = 0;
|
||
|
mul_add_c(a[2], b[0], c3, c1, c2);
|
||
|
mul_add_c(a[1], b[1], c3, c1, c2);
|
||
|
mul_add_c(a[0], b[2], c3, c1, c2);
|
||
|
r[2] = c3;
|
||
|
c3 = 0;
|
||
|
mul_add_c(a[0], b[3], c1, c2, c3);
|
||
|
mul_add_c(a[1], b[2], c1, c2, c3);
|
||
|
mul_add_c(a[2], b[1], c1, c2, c3);
|
||
|
mul_add_c(a[3], b[0], c1, c2, c3);
|
||
|
r[3] = c1;
|
||
|
c1 = 0;
|
||
|
mul_add_c(a[4], b[0], c2, c3, c1);
|
||
|
mul_add_c(a[3], b[1], c2, c3, c1);
|
||
|
mul_add_c(a[2], b[2], c2, c3, c1);
|
||
|
mul_add_c(a[1], b[3], c2, c3, c1);
|
||
|
mul_add_c(a[0], b[4], c2, c3, c1);
|
||
|
r[4] = c2;
|
||
|
c2 = 0;
|
||
|
mul_add_c(a[0], b[5], c3, c1, c2);
|
||
|
mul_add_c(a[1], b[4], c3, c1, c2);
|
||
|
mul_add_c(a[2], b[3], c3, c1, c2);
|
||
|
mul_add_c(a[3], b[2], c3, c1, c2);
|
||
|
mul_add_c(a[4], b[1], c3, c1, c2);
|
||
|
mul_add_c(a[5], b[0], c3, c1, c2);
|
||
|
r[5] = c3;
|
||
|
c3 = 0;
|
||
|
mul_add_c(a[6], b[0], c1, c2, c3);
|
||
|
mul_add_c(a[5], b[1], c1, c2, c3);
|
||
|
mul_add_c(a[4], b[2], c1, c2, c3);
|
||
|
mul_add_c(a[3], b[3], c1, c2, c3);
|
||
|
mul_add_c(a[2], b[4], c1, c2, c3);
|
||
|
mul_add_c(a[1], b[5], c1, c2, c3);
|
||
|
mul_add_c(a[0], b[6], c1, c2, c3);
|
||
|
r[6] = c1;
|
||
|
c1 = 0;
|
||
|
mul_add_c(a[0], b[7], c2, c3, c1);
|
||
|
mul_add_c(a[1], b[6], c2, c3, c1);
|
||
|
mul_add_c(a[2], b[5], c2, c3, c1);
|
||
|
mul_add_c(a[3], b[4], c2, c3, c1);
|
||
|
mul_add_c(a[4], b[3], c2, c3, c1);
|
||
|
mul_add_c(a[5], b[2], c2, c3, c1);
|
||
|
mul_add_c(a[6], b[1], c2, c3, c1);
|
||
|
mul_add_c(a[7], b[0], c2, c3, c1);
|
||
|
r[7] = c2;
|
||
|
c2 = 0;
|
||
|
mul_add_c(a[7], b[1], c3, c1, c2);
|
||
|
mul_add_c(a[6], b[2], c3, c1, c2);
|
||
|
mul_add_c(a[5], b[3], c3, c1, c2);
|
||
|
mul_add_c(a[4], b[4], c3, c1, c2);
|
||
|
mul_add_c(a[3], b[5], c3, c1, c2);
|
||
|
mul_add_c(a[2], b[6], c3, c1, c2);
|
||
|
mul_add_c(a[1], b[7], c3, c1, c2);
|
||
|
r[8] = c3;
|
||
|
c3 = 0;
|
||
|
mul_add_c(a[2], b[7], c1, c2, c3);
|
||
|
mul_add_c(a[3], b[6], c1, c2, c3);
|
||
|
mul_add_c(a[4], b[5], c1, c2, c3);
|
||
|
mul_add_c(a[5], b[4], c1, c2, c3);
|
||
|
mul_add_c(a[6], b[3], c1, c2, c3);
|
||
|
mul_add_c(a[7], b[2], c1, c2, c3);
|
||
|
r[9] = c1;
|
||
|
c1 = 0;
|
||
|
mul_add_c(a[7], b[3], c2, c3, c1);
|
||
|
mul_add_c(a[6], b[4], c2, c3, c1);
|
||
|
mul_add_c(a[5], b[5], c2, c3, c1);
|
||
|
mul_add_c(a[4], b[6], c2, c3, c1);
|
||
|
mul_add_c(a[3], b[7], c2, c3, c1);
|
||
|
r[10] = c2;
|
||
|
c2 = 0;
|
||
|
mul_add_c(a[4], b[7], c3, c1, c2);
|
||
|
mul_add_c(a[5], b[6], c3, c1, c2);
|
||
|
mul_add_c(a[6], b[5], c3, c1, c2);
|
||
|
mul_add_c(a[7], b[4], c3, c1, c2);
|
||
|
r[11] = c3;
|
||
|
c3 = 0;
|
||
|
mul_add_c(a[7], b[5], c1, c2, c3);
|
||
|
mul_add_c(a[6], b[6], c1, c2, c3);
|
||
|
mul_add_c(a[5], b[7], c1, c2, c3);
|
||
|
r[12] = c1;
|
||
|
c1 = 0;
|
||
|
mul_add_c(a[6], b[7], c2, c3, c1);
|
||
|
mul_add_c(a[7], b[6], c2, c3, c1);
|
||
|
r[13] = c2;
|
||
|
c2 = 0;
|
||
|
mul_add_c(a[7], b[7], c3, c1, c2);
|
||
|
r[14] = c3;
|
||
|
r[15] = c1;
|
||
|
}
|
||
|
|
||
|
void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]) {
|
||
|
BN_ULONG c1, c2, c3;
|
||
|
|
||
|
c1 = 0;
|
||
|
c2 = 0;
|
||
|
c3 = 0;
|
||
|
mul_add_c(a[0], b[0], c1, c2, c3);
|
||
|
r[0] = c1;
|
||
|
c1 = 0;
|
||
|
mul_add_c(a[0], b[1], c2, c3, c1);
|
||
|
mul_add_c(a[1], b[0], c2, c3, c1);
|
||
|
r[1] = c2;
|
||
|
c2 = 0;
|
||
|
mul_add_c(a[2], b[0], c3, c1, c2);
|
||
|
mul_add_c(a[1], b[1], c3, c1, c2);
|
||
|
mul_add_c(a[0], b[2], c3, c1, c2);
|
||
|
r[2] = c3;
|
||
|
c3 = 0;
|
||
|
mul_add_c(a[0], b[3], c1, c2, c3);
|
||
|
mul_add_c(a[1], b[2], c1, c2, c3);
|
||
|
mul_add_c(a[2], b[1], c1, c2, c3);
|
||
|
mul_add_c(a[3], b[0], c1, c2, c3);
|
||
|
r[3] = c1;
|
||
|
c1 = 0;
|
||
|
mul_add_c(a[3], b[1], c2, c3, c1);
|
||
|
mul_add_c(a[2], b[2], c2, c3, c1);
|
||
|
mul_add_c(a[1], b[3], c2, c3, c1);
|
||
|
r[4] = c2;
|
||
|
c2 = 0;
|
||
|
mul_add_c(a[2], b[3], c3, c1, c2);
|
||
|
mul_add_c(a[3], b[2], c3, c1, c2);
|
||
|
r[5] = c3;
|
||
|
c3 = 0;
|
||
|
mul_add_c(a[3], b[3], c1, c2, c3);
|
||
|
r[6] = c1;
|
||
|
r[7] = c2;
|
||
|
}
|
||
|
|
||
|
void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[8]) {
|
||
|
BN_ULONG c1, c2, c3;
|
||
|
|
||
|
c1 = 0;
|
||
|
c2 = 0;
|
||
|
c3 = 0;
|
||
|
sqr_add_c(a, 0, c1, c2, c3);
|
||
|
r[0] = c1;
|
||
|
c1 = 0;
|
||
|
sqr_add_c2(a, 1, 0, c2, c3, c1);
|
||
|
r[1] = c2;
|
||
|
c2 = 0;
|
||
|
sqr_add_c(a, 1, c3, c1, c2);
|
||
|
sqr_add_c2(a, 2, 0, c3, c1, c2);
|
||
|
r[2] = c3;
|
||
|
c3 = 0;
|
||
|
sqr_add_c2(a, 3, 0, c1, c2, c3);
|
||
|
sqr_add_c2(a, 2, 1, c1, c2, c3);
|
||
|
r[3] = c1;
|
||
|
c1 = 0;
|
||
|
sqr_add_c(a, 2, c2, c3, c1);
|
||
|
sqr_add_c2(a, 3, 1, c2, c3, c1);
|
||
|
sqr_add_c2(a, 4, 0, c2, c3, c1);
|
||
|
r[4] = c2;
|
||
|
c2 = 0;
|
||
|
sqr_add_c2(a, 5, 0, c3, c1, c2);
|
||
|
sqr_add_c2(a, 4, 1, c3, c1, c2);
|
||
|
sqr_add_c2(a, 3, 2, c3, c1, c2);
|
||
|
r[5] = c3;
|
||
|
c3 = 0;
|
||
|
sqr_add_c(a, 3, c1, c2, c3);
|
||
|
sqr_add_c2(a, 4, 2, c1, c2, c3);
|
||
|
sqr_add_c2(a, 5, 1, c1, c2, c3);
|
||
|
sqr_add_c2(a, 6, 0, c1, c2, c3);
|
||
|
r[6] = c1;
|
||
|
c1 = 0;
|
||
|
sqr_add_c2(a, 7, 0, c2, c3, c1);
|
||
|
sqr_add_c2(a, 6, 1, c2, c3, c1);
|
||
|
sqr_add_c2(a, 5, 2, c2, c3, c1);
|
||
|
sqr_add_c2(a, 4, 3, c2, c3, c1);
|
||
|
r[7] = c2;
|
||
|
c2 = 0;
|
||
|
sqr_add_c(a, 4, c3, c1, c2);
|
||
|
sqr_add_c2(a, 5, 3, c3, c1, c2);
|
||
|
sqr_add_c2(a, 6, 2, c3, c1, c2);
|
||
|
sqr_add_c2(a, 7, 1, c3, c1, c2);
|
||
|
r[8] = c3;
|
||
|
c3 = 0;
|
||
|
sqr_add_c2(a, 7, 2, c1, c2, c3);
|
||
|
sqr_add_c2(a, 6, 3, c1, c2, c3);
|
||
|
sqr_add_c2(a, 5, 4, c1, c2, c3);
|
||
|
r[9] = c1;
|
||
|
c1 = 0;
|
||
|
sqr_add_c(a, 5, c2, c3, c1);
|
||
|
sqr_add_c2(a, 6, 4, c2, c3, c1);
|
||
|
sqr_add_c2(a, 7, 3, c2, c3, c1);
|
||
|
r[10] = c2;
|
||
|
c2 = 0;
|
||
|
sqr_add_c2(a, 7, 4, c3, c1, c2);
|
||
|
sqr_add_c2(a, 6, 5, c3, c1, c2);
|
||
|
r[11] = c3;
|
||
|
c3 = 0;
|
||
|
sqr_add_c(a, 6, c1, c2, c3);
|
||
|
sqr_add_c2(a, 7, 5, c1, c2, c3);
|
||
|
r[12] = c1;
|
||
|
c1 = 0;
|
||
|
sqr_add_c2(a, 7, 6, c2, c3, c1);
|
||
|
r[13] = c2;
|
||
|
c2 = 0;
|
||
|
sqr_add_c(a, 7, c3, c1, c2);
|
||
|
r[14] = c3;
|
||
|
r[15] = c1;
|
||
|
}
|
||
|
|
||
|
void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]) {
|
||
|
BN_ULONG c1, c2, c3;
|
||
|
|
||
|
c1 = 0;
|
||
|
c2 = 0;
|
||
|
c3 = 0;
|
||
|
sqr_add_c(a, 0, c1, c2, c3);
|
||
|
r[0] = c1;
|
||
|
c1 = 0;
|
||
|
sqr_add_c2(a, 1, 0, c2, c3, c1);
|
||
|
r[1] = c2;
|
||
|
c2 = 0;
|
||
|
sqr_add_c(a, 1, c3, c1, c2);
|
||
|
sqr_add_c2(a, 2, 0, c3, c1, c2);
|
||
|
r[2] = c3;
|
||
|
c3 = 0;
|
||
|
sqr_add_c2(a, 3, 0, c1, c2, c3);
|
||
|
sqr_add_c2(a, 2, 1, c1, c2, c3);
|
||
|
r[3] = c1;
|
||
|
c1 = 0;
|
||
|
sqr_add_c(a, 2, c2, c3, c1);
|
||
|
sqr_add_c2(a, 3, 1, c2, c3, c1);
|
||
|
r[4] = c2;
|
||
|
c2 = 0;
|
||
|
sqr_add_c2(a, 3, 2, c3, c1, c2);
|
||
|
r[5] = c3;
|
||
|
c3 = 0;
|
||
|
sqr_add_c(a, 3, c1, c2, c3);
|
||
|
r[6] = c1;
|
||
|
r[7] = c2;
|
||
|
}
|
||
|
|
||
|
#undef mul_add
|
||
|
#undef mul
|
||
|
#undef sqr
|
||
|
#undef mul_add_c
|
||
|
#undef mul_add_c2
|
||
|
#undef sqr_add_c
|
||
|
#undef sqr_add_c2
|
||
|
|
||
|
#endif
|