466 lines
16 KiB
C
466 lines
16 KiB
C
|
/* ====================================================================
|
|||
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|||
|
*
|
|||
|
* Redistribution and use in source and binary forms, with or without
|
|||
|
* modification, are permitted provided that the following conditions
|
|||
|
* are met:
|
|||
|
*
|
|||
|
* 1. Redistributions of source code must retain the above copyright
|
|||
|
* notice, this list of conditions and the following disclaimer.
|
|||
|
*
|
|||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|||
|
* notice, this list of conditions and the following disclaimer in
|
|||
|
* the documentation and/or other materials provided with the
|
|||
|
* distribution.
|
|||
|
*
|
|||
|
* 3. All advertising materials mentioning features or use of this
|
|||
|
* software must display the following acknowledgment:
|
|||
|
* "This product includes software developed by the OpenSSL Project
|
|||
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|||
|
*
|
|||
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|||
|
* endorse or promote products derived from this software without
|
|||
|
* prior written permission. For written permission, please contact
|
|||
|
* openssl-core@OpenSSL.org.
|
|||
|
*
|
|||
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|||
|
* nor may "OpenSSL" appear in their names without prior written
|
|||
|
* permission of the OpenSSL Project.
|
|||
|
*
|
|||
|
* 6. Redistributions of any form whatsoever must retain the following
|
|||
|
* acknowledgment:
|
|||
|
* "This product includes software developed by the OpenSSL Project
|
|||
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|||
|
*
|
|||
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|||
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|||
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|||
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
* ====================================================================
|
|||
|
*
|
|||
|
* This product includes cryptographic software written by Eric Young
|
|||
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|||
|
* Hudson (tjh@cryptsoft.com). */
|
|||
|
|
|||
|
#include <openssl/ecdsa.h>
|
|||
|
|
|||
|
#include <assert.h>
|
|||
|
#include <string.h>
|
|||
|
|
|||
|
#include <openssl/bn.h>
|
|||
|
#include <openssl/err.h>
|
|||
|
#include <openssl/mem.h>
|
|||
|
#include <openssl/sha.h>
|
|||
|
#include <openssl/type_check.h>
|
|||
|
|
|||
|
#include "../bn/internal.h"
|
|||
|
#include "../ec/internal.h"
|
|||
|
#include "../../internal.h"
|
|||
|
|
|||
|
|
|||
|
// EC_LOOSE_SCALAR is like |EC_SCALAR| but is bounded by 2^|BN_num_bits(order)|
|
|||
|
// rather than |order|.
|
|||
|
typedef union {
|
|||
|
// bytes is the representation of the scalar in little-endian order.
|
|||
|
uint8_t bytes[EC_MAX_SCALAR_BYTES];
|
|||
|
BN_ULONG words[EC_MAX_SCALAR_WORDS];
|
|||
|
} EC_LOOSE_SCALAR;
|
|||
|
|
|||
|
static void scalar_add_loose(const EC_GROUP *group, EC_LOOSE_SCALAR *r,
|
|||
|
const EC_LOOSE_SCALAR *a, const EC_SCALAR *b) {
|
|||
|
// Add and subtract one copy of |order| if necessary. We have:
|
|||
|
// |a| + |b| < 2^BN_num_bits(order) + order
|
|||
|
// so this leaves |r| < 2^BN_num_bits(order).
|
|||
|
const BIGNUM *order = &group->order;
|
|||
|
BN_ULONG carry = bn_add_words(r->words, a->words, b->words, order->top);
|
|||
|
EC_LOOSE_SCALAR tmp;
|
|||
|
BN_ULONG v = bn_sub_words(tmp.words, r->words, order->d, order->top) - carry;
|
|||
|
v = 0u - v;
|
|||
|
for (int i = 0; i < order->top; i++) {
|
|||
|
OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
|
|||
|
crypto_word_t_too_small);
|
|||
|
r->words[i] = constant_time_select_w(v, r->words[i], tmp.words[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
static int scalar_mod_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r,
|
|||
|
const EC_SCALAR *a, const EC_SCALAR *b) {
|
|||
|
const BIGNUM *order = &group->order;
|
|||
|
return bn_mod_mul_montgomery_small(r->words, order->top, a->words, order->top,
|
|||
|
b->words, order->top, group->order_mont);
|
|||
|
}
|
|||
|
|
|||
|
static int scalar_mod_mul_montgomery_loose(const EC_GROUP *group, EC_SCALAR *r,
|
|||
|
const EC_LOOSE_SCALAR *a,
|
|||
|
const EC_SCALAR *b) {
|
|||
|
// Although |a| is loose, |bn_mod_mul_montgomery_small| only requires the
|
|||
|
// product not exceed R * |order|. |b| is fully reduced and |a| <
|
|||
|
// 2^BN_num_bits(order) <= R, so this holds.
|
|||
|
const BIGNUM *order = &group->order;
|
|||
|
return bn_mod_mul_montgomery_small(r->words, order->top, a->words, order->top,
|
|||
|
b->words, order->top, group->order_mont);
|
|||
|
}
|
|||
|
|
|||
|
// digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
|
|||
|
// ECDSA. Note this value is not fully reduced modulo the order, only the
|
|||
|
// correct number of bits.
|
|||
|
static void digest_to_scalar(const EC_GROUP *group, EC_LOOSE_SCALAR *out,
|
|||
|
const uint8_t *digest, size_t digest_len) {
|
|||
|
const BIGNUM *order = &group->order;
|
|||
|
size_t num_bits = BN_num_bits(order);
|
|||
|
// Need to truncate digest if it is too long: first truncate whole bytes.
|
|||
|
if (8 * digest_len > num_bits) {
|
|||
|
digest_len = (num_bits + 7) / 8;
|
|||
|
}
|
|||
|
OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
|
|||
|
for (size_t i = 0; i < digest_len; i++) {
|
|||
|
out->bytes[i] = digest[digest_len - 1 - i];
|
|||
|
}
|
|||
|
|
|||
|
// If still too long truncate remaining bits with a shift
|
|||
|
if (8 * digest_len > num_bits) {
|
|||
|
size_t shift = 8 - (num_bits & 0x7);
|
|||
|
for (int i = 0; i < order->top - 1; i++) {
|
|||
|
out->words[i] =
|
|||
|
(out->words[i] >> shift) | (out->words[i + 1] << (BN_BITS2 - shift));
|
|||
|
}
|
|||
|
out->words[order->top - 1] >>= shift;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// field_element_to_scalar reduces |r| modulo |group->order|. |r| must
|
|||
|
// previously have been reduced modulo |group->field|.
|
|||
|
static int field_element_to_scalar(const EC_GROUP *group, BIGNUM *r) {
|
|||
|
// We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we
|
|||
|
// can reduce by performing at most one subtraction.
|
|||
|
//
|
|||
|
// Proof: We only work with prime order curves, so the number of points on
|
|||
|
// the curve is the order. Thus Hasse's theorem gives:
|
|||
|
//
|
|||
|
// |order - (p + 1)| <= 2×sqrt(p)
|
|||
|
// p + 1 - order <= 2×sqrt(p)
|
|||
|
// p + 1 - 2×sqrt(p) <= order
|
|||
|
// p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17)
|
|||
|
// p/2 < p/2 + 1 < order
|
|||
|
// p < 2×order
|
|||
|
//
|
|||
|
// Additionally, one can manually check this property for built-in curves. It
|
|||
|
// is enforced for legacy custom curves in |EC_GROUP_set_generator|.
|
|||
|
//
|
|||
|
// TODO(davidben): Introduce |EC_FIELD_ELEMENT|, make this a function from
|
|||
|
// |EC_FIELD_ELEMENT| to |EC_SCALAR|, and cut out the |BIGNUM|. Does this need
|
|||
|
// to be constant-time for signing? |r| is the x-coordinate for kG, which is
|
|||
|
// public unless k was rerolled because |s| was zero.
|
|||
|
assert(!BN_is_negative(r));
|
|||
|
assert(BN_cmp(r, &group->field) < 0);
|
|||
|
if (BN_cmp(r, &group->order) >= 0 &&
|
|||
|
!BN_sub(r, r, &group->order)) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
assert(!BN_is_negative(r));
|
|||
|
assert(BN_cmp(r, &group->order) < 0);
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
ECDSA_SIG *ECDSA_SIG_new(void) {
|
|||
|
ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
|
|||
|
if (sig == NULL) {
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
sig->r = BN_new();
|
|||
|
sig->s = BN_new();
|
|||
|
if (sig->r == NULL || sig->s == NULL) {
|
|||
|
ECDSA_SIG_free(sig);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
return sig;
|
|||
|
}
|
|||
|
|
|||
|
void ECDSA_SIG_free(ECDSA_SIG *sig) {
|
|||
|
if (sig == NULL) {
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
BN_free(sig->r);
|
|||
|
BN_free(sig->s);
|
|||
|
OPENSSL_free(sig);
|
|||
|
}
|
|||
|
|
|||
|
void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
|
|||
|
const BIGNUM **out_s) {
|
|||
|
if (out_r != NULL) {
|
|||
|
*out_r = sig->r;
|
|||
|
}
|
|||
|
if (out_s != NULL) {
|
|||
|
*out_s = sig->s;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
|
|||
|
if (r == NULL || s == NULL) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
BN_free(sig->r);
|
|||
|
BN_free(sig->s);
|
|||
|
sig->r = r;
|
|||
|
sig->s = s;
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
|
|||
|
const ECDSA_SIG *sig, const EC_KEY *eckey) {
|
|||
|
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
|||
|
const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
|
|||
|
if (group == NULL || pub_key == NULL || sig == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
BN_CTX *ctx = BN_CTX_new();
|
|||
|
if (!ctx) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
int ret = 0;
|
|||
|
EC_POINT *point = NULL;
|
|||
|
BN_CTX_start(ctx);
|
|||
|
BIGNUM *X = BN_CTX_get(ctx);
|
|||
|
if (X == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
EC_SCALAR r, s, u1, u2, s_inv_mont;
|
|||
|
EC_LOOSE_SCALAR m;
|
|||
|
const BIGNUM *order = EC_GROUP_get0_order(group);
|
|||
|
if (BN_is_zero(sig->r) ||
|
|||
|
!ec_bignum_to_scalar(group, &r, sig->r) ||
|
|||
|
BN_is_zero(sig->s) ||
|
|||
|
!ec_bignum_to_scalar(group, &s, sig->s)) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
// s_inv_mont = s^-1 mod order. We convert the result to Montgomery form for
|
|||
|
// the products below.
|
|||
|
int no_inverse;
|
|||
|
if (!BN_mod_inverse_odd(X, &no_inverse, sig->s, order, ctx) ||
|
|||
|
// TODO(davidben): Add a words version of |BN_mod_inverse_odd| and write
|
|||
|
// into |s_inv_mont| directly.
|
|||
|
!ec_bignum_to_scalar_unchecked(group, &s_inv_mont, X) ||
|
|||
|
!bn_to_montgomery_small(s_inv_mont.words, order->top, s_inv_mont.words,
|
|||
|
order->top, group->order_mont)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
// u1 = m * s^-1 mod order
|
|||
|
// u2 = r * s^-1 mod order
|
|||
|
//
|
|||
|
// |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
|
|||
|
// |u2| will be taken out of Montgomery form, as desired.
|
|||
|
digest_to_scalar(group, &m, digest, digest_len);
|
|||
|
if (!scalar_mod_mul_montgomery_loose(group, &u1, &m, &s_inv_mont) ||
|
|||
|
!scalar_mod_mul_montgomery(group, &u2, &r, &s_inv_mont)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
point = EC_POINT_new(group);
|
|||
|
if (point == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (!ec_point_mul_scalar_public(group, point, &u1, pub_key, &u2, ctx)) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (!field_element_to_scalar(group, X)) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
// The signature is correct iff |X| is equal to |sig->r|.
|
|||
|
if (BN_ucmp(X, sig->r) != 0) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
ret = 1;
|
|||
|
|
|||
|
err:
|
|||
|
BN_CTX_end(ctx);
|
|||
|
BN_CTX_free(ctx);
|
|||
|
EC_POINT_free(point);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx,
|
|||
|
EC_SCALAR *out_kinv_mont, BIGNUM **rp,
|
|||
|
const uint8_t *digest, size_t digest_len,
|
|||
|
const EC_SCALAR *priv_key) {
|
|||
|
EC_POINT *tmp_point = NULL;
|
|||
|
int ret = 0;
|
|||
|
EC_SCALAR k;
|
|||
|
BIGNUM *r = BN_new(); // this value is later returned in *rp
|
|||
|
if (r == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
|||
|
const BIGNUM *order = EC_GROUP_get0_order(group);
|
|||
|
tmp_point = EC_POINT_new(group);
|
|||
|
if (tmp_point == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// Check that the size of the group order is FIPS compliant (FIPS 186-4
|
|||
|
// B.5.2).
|
|||
|
if (BN_num_bits(order) < 160) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
do {
|
|||
|
// Include the private key and message digest in the k generation.
|
|||
|
if (eckey->fixed_k != NULL) {
|
|||
|
if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
} else {
|
|||
|
// Pass a SHA512 hash of the private key and digest as additional data
|
|||
|
// into the RBG. This is a hardening measure against entropy failure.
|
|||
|
OPENSSL_COMPILE_ASSERT(SHA512_DIGEST_LENGTH >= 32,
|
|||
|
additional_data_is_too_large_for_sha512);
|
|||
|
SHA512_CTX sha;
|
|||
|
uint8_t additional_data[SHA512_DIGEST_LENGTH];
|
|||
|
SHA512_Init(&sha);
|
|||
|
SHA512_Update(&sha, priv_key->words, order->top * sizeof(BN_ULONG));
|
|||
|
SHA512_Update(&sha, digest, digest_len);
|
|||
|
SHA512_Final(additional_data, &sha);
|
|||
|
if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Compute k^-1. We leave it in the Montgomery domain as an optimization for
|
|||
|
// later operations.
|
|||
|
if (!bn_to_montgomery_small(out_kinv_mont->words, order->top, k.words,
|
|||
|
order->top, group->order_mont) ||
|
|||
|
!bn_mod_inverse_prime_mont_small(out_kinv_mont->words, order->top,
|
|||
|
out_kinv_mont->words, order->top,
|
|||
|
group->order_mont)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// Compute r, the x-coordinate of generator * k.
|
|||
|
if (!ec_point_mul_scalar(group, tmp_point, &k, NULL, NULL, ctx) ||
|
|||
|
!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, r, NULL,
|
|||
|
ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!field_element_to_scalar(group, r)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
} while (BN_is_zero(r));
|
|||
|
|
|||
|
BN_clear_free(*rp);
|
|||
|
*rp = r;
|
|||
|
r = NULL;
|
|||
|
ret = 1;
|
|||
|
|
|||
|
err:
|
|||
|
OPENSSL_cleanse(&k, sizeof(k));
|
|||
|
BN_clear_free(r);
|
|||
|
EC_POINT_free(tmp_point);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
|
|||
|
const EC_KEY *eckey) {
|
|||
|
if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
|||
|
const BIGNUM *priv_key_bn = EC_KEY_get0_private_key(eckey);
|
|||
|
if (group == NULL || priv_key_bn == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
const BIGNUM *order = EC_GROUP_get0_order(group);
|
|||
|
|
|||
|
int ok = 0;
|
|||
|
ECDSA_SIG *ret = ECDSA_SIG_new();
|
|||
|
BN_CTX *ctx = BN_CTX_new();
|
|||
|
EC_SCALAR kinv_mont, priv_key, r_mont, s;
|
|||
|
EC_LOOSE_SCALAR m, tmp;
|
|||
|
if (ret == NULL || ctx == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
digest_to_scalar(group, &m, digest, digest_len);
|
|||
|
// TODO(davidben): Store the private key as an |EC_SCALAR| so this is obvious
|
|||
|
// via the type system.
|
|||
|
if (!ec_bignum_to_scalar_unchecked(group, &priv_key, priv_key_bn)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
for (;;) {
|
|||
|
if (!ecdsa_sign_setup(eckey, ctx, &kinv_mont, &ret->r, digest, digest_len,
|
|||
|
&priv_key)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// Compute priv_key * r (mod order). Note if only one parameter is in the
|
|||
|
// Montgomery domain, |scalar_mod_mul_montgomery| will compute the answer in
|
|||
|
// the normal domain.
|
|||
|
if (!ec_bignum_to_scalar(group, &r_mont, ret->r) ||
|
|||
|
!bn_to_montgomery_small(r_mont.words, order->top, r_mont.words,
|
|||
|
order->top, group->order_mont) ||
|
|||
|
!scalar_mod_mul_montgomery(group, &s, &priv_key, &r_mont)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// Compute tmp = m + priv_key * r.
|
|||
|
scalar_add_loose(group, &tmp, &m, &s);
|
|||
|
|
|||
|
// Finally, multiply s by k^-1. That was retained in Montgomery form, so the
|
|||
|
// same technique as the previous multiplication works.
|
|||
|
if (!scalar_mod_mul_montgomery_loose(group, &s, &tmp, &kinv_mont) ||
|
|||
|
!bn_set_words(ret->s, s.words, order->top)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (!BN_is_zero(ret->s)) {
|
|||
|
// s != 0 => we have a valid signature
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
ok = 1;
|
|||
|
|
|||
|
err:
|
|||
|
if (!ok) {
|
|||
|
ECDSA_SIG_free(ret);
|
|||
|
ret = NULL;
|
|||
|
}
|
|||
|
BN_CTX_free(ctx);
|
|||
|
OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
|
|||
|
OPENSSL_cleanse(&priv_key, sizeof(priv_key));
|
|||
|
OPENSSL_cleanse(&r_mont, sizeof(r_mont));
|
|||
|
OPENSSL_cleanse(&s, sizeof(s));
|
|||
|
OPENSSL_cleanse(&tmp, sizeof(tmp));
|
|||
|
OPENSSL_cleanse(&m, sizeof(m));
|
|||
|
return ret;
|
|||
|
}
|