313 lines
10 KiB
C++
313 lines
10 KiB
C++
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#include "base/cpu.h"
|
||
|
|
||
|
#include <limits.h>
|
||
|
#include <stddef.h>
|
||
|
#include <stdint.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <utility>
|
||
|
|
||
|
#include "base/stl_util.h"
|
||
|
|
||
|
#if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
|
||
|
#include "base/files/file_util.h"
|
||
|
#endif
|
||
|
|
||
|
#if defined(ARCH_CPU_X86_FAMILY)
|
||
|
#if defined(COMPILER_MSVC)
|
||
|
#include <intrin.h>
|
||
|
#include <immintrin.h> // For _xgetbv()
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
namespace base {
|
||
|
|
||
|
#if defined(ARCH_CPU_X86_FAMILY)
|
||
|
namespace internal {
|
||
|
|
||
|
std::tuple<int, int, int, int> ComputeX86FamilyAndModel(
|
||
|
const std::string& vendor,
|
||
|
int signature) {
|
||
|
int family = (signature >> 8) & 0xf;
|
||
|
int model = (signature >> 4) & 0xf;
|
||
|
int ext_family = 0;
|
||
|
int ext_model = 0;
|
||
|
|
||
|
// The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
|
||
|
// specifies the Extended Model is defined only when the Base Family is
|
||
|
// 06h or 0Fh.
|
||
|
// The "AMD CPUID Specification" specifies that the Extended Model is
|
||
|
// defined only when Base Family is 0Fh.
|
||
|
// Both manuals define the display model as
|
||
|
// {ExtendedModel[3:0],BaseModel[3:0]} in that case.
|
||
|
if (family == 0xf || (family == 0x6 && vendor == "GenuineIntel")) {
|
||
|
ext_model = (signature >> 16) & 0xf;
|
||
|
model += ext_model << 4;
|
||
|
}
|
||
|
// Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
|
||
|
// and the "AMD CPUID Specification" specify that the Extended Family is
|
||
|
// defined only when the Base Family is 0Fh.
|
||
|
// Both manuals define the display family as {0000b,BaseFamily[3:0]} +
|
||
|
// ExtendedFamily[7:0] in that case.
|
||
|
if (family == 0xf) {
|
||
|
ext_family = (signature >> 20) & 0xff;
|
||
|
family += ext_family;
|
||
|
}
|
||
|
|
||
|
return {family, model, ext_family, ext_model};
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
#endif // defined(ARCH_CPU_X86_FAMILY)
|
||
|
|
||
|
CPU::CPU()
|
||
|
: signature_(0),
|
||
|
type_(0),
|
||
|
family_(0),
|
||
|
model_(0),
|
||
|
stepping_(0),
|
||
|
ext_model_(0),
|
||
|
ext_family_(0),
|
||
|
has_mmx_(false),
|
||
|
has_sse_(false),
|
||
|
has_sse2_(false),
|
||
|
has_sse3_(false),
|
||
|
has_ssse3_(false),
|
||
|
has_sse41_(false),
|
||
|
has_sse42_(false),
|
||
|
has_popcnt_(false),
|
||
|
has_avx_(false),
|
||
|
has_avx2_(false),
|
||
|
has_aesni_(false),
|
||
|
has_non_stop_time_stamp_counter_(false),
|
||
|
is_running_in_vm_(false),
|
||
|
cpu_vendor_("unknown") {
|
||
|
Initialize();
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
#if defined(ARCH_CPU_X86_FAMILY)
|
||
|
#if !defined(COMPILER_MSVC)
|
||
|
|
||
|
#if defined(__pic__) && defined(__i386__)
|
||
|
|
||
|
void __cpuid(int cpu_info[4], int info_type) {
|
||
|
__asm__ volatile(
|
||
|
"mov %%ebx, %%edi\n"
|
||
|
"cpuid\n"
|
||
|
"xchg %%edi, %%ebx\n"
|
||
|
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
|
||
|
"=d"(cpu_info[3])
|
||
|
: "a"(info_type), "c"(0));
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
void __cpuid(int cpu_info[4], int info_type) {
|
||
|
__asm__ volatile("cpuid\n"
|
||
|
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
|
||
|
"=d"(cpu_info[3])
|
||
|
: "a"(info_type), "c"(0));
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
#endif // !defined(COMPILER_MSVC)
|
||
|
|
||
|
// xgetbv returns the value of an Intel Extended Control Register (XCR).
|
||
|
// Currently only XCR0 is defined by Intel so |xcr| should always be zero.
|
||
|
uint64_t xgetbv(uint32_t xcr) {
|
||
|
#if defined(COMPILER_MSVC)
|
||
|
return _xgetbv(xcr);
|
||
|
#else
|
||
|
uint32_t eax, edx;
|
||
|
|
||
|
__asm__ volatile (
|
||
|
"xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
|
||
|
return (static_cast<uint64_t>(edx) << 32) | eax;
|
||
|
#endif // defined(COMPILER_MSVC)
|
||
|
}
|
||
|
|
||
|
#endif // ARCH_CPU_X86_FAMILY
|
||
|
|
||
|
#if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
|
||
|
std::string* CpuInfoBrand() {
|
||
|
static std::string* brand = []() {
|
||
|
// This function finds the value from /proc/cpuinfo under the key "model
|
||
|
// name" or "Processor". "model name" is used in Linux 3.8 and later (3.7
|
||
|
// and later for arm64) and is shown once per CPU. "Processor" is used in
|
||
|
// earler versions and is shown only once at the top of /proc/cpuinfo
|
||
|
// regardless of the number CPUs.
|
||
|
const char kModelNamePrefix[] = "model name\t: ";
|
||
|
const char kProcessorPrefix[] = "Processor\t: ";
|
||
|
|
||
|
std::string contents;
|
||
|
ReadFileToString(FilePath("/proc/cpuinfo"), &contents);
|
||
|
DCHECK(!contents.empty());
|
||
|
|
||
|
std::istringstream iss(contents);
|
||
|
std::string line;
|
||
|
while (std::getline(iss, line)) {
|
||
|
if (line.compare(0, strlen(kModelNamePrefix), kModelNamePrefix) == 0)
|
||
|
return new std::string(line.substr(strlen(kModelNamePrefix)));
|
||
|
if (line.compare(0, strlen(kProcessorPrefix), kProcessorPrefix) == 0)
|
||
|
return new std::string(line.substr(strlen(kProcessorPrefix)));
|
||
|
}
|
||
|
|
||
|
return new std::string();
|
||
|
}();
|
||
|
|
||
|
return brand;
|
||
|
}
|
||
|
#endif // defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) ||
|
||
|
// defined(OS_LINUX))
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
void CPU::Initialize() {
|
||
|
#if defined(ARCH_CPU_X86_FAMILY)
|
||
|
int cpu_info[4] = {-1};
|
||
|
// This array is used to temporarily hold the vendor name and then the brand
|
||
|
// name. Thus it has to be big enough for both use cases. There are
|
||
|
// static_asserts below for each of the use cases to make sure this array is
|
||
|
// big enough.
|
||
|
char cpu_string[sizeof(cpu_info) * 3 + 1];
|
||
|
|
||
|
// __cpuid with an InfoType argument of 0 returns the number of
|
||
|
// valid Ids in CPUInfo[0] and the CPU identification string in
|
||
|
// the other three array elements. The CPU identification string is
|
||
|
// not in linear order. The code below arranges the information
|
||
|
// in a human readable form. The human readable order is CPUInfo[1] |
|
||
|
// CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
|
||
|
// before using memcpy() to copy these three array elements to |cpu_string|.
|
||
|
__cpuid(cpu_info, 0);
|
||
|
int num_ids = cpu_info[0];
|
||
|
std::swap(cpu_info[2], cpu_info[3]);
|
||
|
static constexpr size_t kVendorNameSize = 3 * sizeof(cpu_info[1]);
|
||
|
static_assert(kVendorNameSize < base::size(cpu_string),
|
||
|
"cpu_string too small");
|
||
|
memcpy(cpu_string, &cpu_info[1], kVendorNameSize);
|
||
|
cpu_string[kVendorNameSize] = '\0';
|
||
|
cpu_vendor_ = cpu_string;
|
||
|
|
||
|
// Interpret CPU feature information.
|
||
|
if (num_ids > 0) {
|
||
|
int cpu_info7[4] = {0};
|
||
|
__cpuid(cpu_info, 1);
|
||
|
if (num_ids >= 7) {
|
||
|
__cpuid(cpu_info7, 7);
|
||
|
}
|
||
|
signature_ = cpu_info[0];
|
||
|
stepping_ = cpu_info[0] & 0xf;
|
||
|
type_ = (cpu_info[0] >> 12) & 0x3;
|
||
|
std::tie(family_, model_, ext_family_, ext_model_) =
|
||
|
internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_);
|
||
|
has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
|
||
|
has_sse_ = (cpu_info[3] & 0x02000000) != 0;
|
||
|
has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
|
||
|
has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
|
||
|
has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
|
||
|
has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
|
||
|
has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
|
||
|
has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
|
||
|
|
||
|
// "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1."
|
||
|
// See https://lwn.net/Articles/301888/
|
||
|
// This is checking for any hypervisor. Hypervisors may choose not to
|
||
|
// announce themselves. Hypervisors trap CPUID and sometimes return
|
||
|
// different results to underlying hardware.
|
||
|
is_running_in_vm_ = (cpu_info[2] & 0x80000000) != 0;
|
||
|
|
||
|
// AVX instructions will generate an illegal instruction exception unless
|
||
|
// a) they are supported by the CPU,
|
||
|
// b) XSAVE is supported by the CPU and
|
||
|
// c) XSAVE is enabled by the kernel.
|
||
|
// See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
|
||
|
//
|
||
|
// In addition, we have observed some crashes with the xgetbv instruction
|
||
|
// even after following Intel's example code. (See crbug.com/375968.)
|
||
|
// Because of that, we also test the XSAVE bit because its description in
|
||
|
// the CPUID documentation suggests that it signals xgetbv support.
|
||
|
has_avx_ =
|
||
|
(cpu_info[2] & 0x10000000) != 0 &&
|
||
|
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
|
||
|
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
|
||
|
(xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
|
||
|
has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
|
||
|
has_avx2_ = has_avx_ && (cpu_info7[1] & 0x00000020) != 0;
|
||
|
}
|
||
|
|
||
|
// Get the brand string of the cpu.
|
||
|
__cpuid(cpu_info, 0x80000000);
|
||
|
const int max_parameter = cpu_info[0];
|
||
|
|
||
|
static constexpr int kParameterStart = 0x80000002;
|
||
|
static constexpr int kParameterEnd = 0x80000004;
|
||
|
static constexpr int kParameterSize = kParameterEnd - kParameterStart + 1;
|
||
|
static_assert(kParameterSize * sizeof(cpu_info) + 1 == base::size(cpu_string),
|
||
|
"cpu_string has wrong size");
|
||
|
|
||
|
if (max_parameter >= kParameterEnd) {
|
||
|
size_t i = 0;
|
||
|
for (int parameter = kParameterStart; parameter <= kParameterEnd;
|
||
|
++parameter) {
|
||
|
__cpuid(cpu_info, parameter);
|
||
|
memcpy(&cpu_string[i], cpu_info, sizeof(cpu_info));
|
||
|
i += sizeof(cpu_info);
|
||
|
}
|
||
|
cpu_string[i] = '\0';
|
||
|
cpu_brand_ = cpu_string;
|
||
|
}
|
||
|
|
||
|
static constexpr int kParameterContainingNonStopTimeStampCounter = 0x80000007;
|
||
|
if (max_parameter >= kParameterContainingNonStopTimeStampCounter) {
|
||
|
__cpuid(cpu_info, kParameterContainingNonStopTimeStampCounter);
|
||
|
has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
|
||
|
}
|
||
|
|
||
|
if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) {
|
||
|
int cpu_info_hv[4] = {};
|
||
|
__cpuid(cpu_info_hv, 0x40000000);
|
||
|
if (cpu_info_hv[1] == 0x7263694D && // Micr
|
||
|
cpu_info_hv[2] == 0x666F736F && // osof
|
||
|
cpu_info_hv[3] == 0x76482074) { // t Hv
|
||
|
// If CPUID says we have a variant TSC and a hypervisor has identified
|
||
|
// itself and the hypervisor says it is Microsoft Hyper-V, then treat
|
||
|
// TSC as invariant.
|
||
|
//
|
||
|
// Microsoft Hyper-V hypervisor reports variant TSC as there are some
|
||
|
// scenarios (eg. VM live migration) where the TSC is variant, but for
|
||
|
// our purposes we can treat it as invariant.
|
||
|
has_non_stop_time_stamp_counter_ = true;
|
||
|
}
|
||
|
}
|
||
|
#elif defined(ARCH_CPU_ARM_FAMILY)
|
||
|
#if (defined(OS_ANDROID) || defined(OS_LINUX))
|
||
|
cpu_brand_ = *CpuInfoBrand();
|
||
|
#elif defined(OS_WIN)
|
||
|
// Windows makes high-resolution thread timing information available in
|
||
|
// user-space.
|
||
|
has_non_stop_time_stamp_counter_ = true;
|
||
|
#endif
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
|
||
|
if (has_avx2()) return AVX2;
|
||
|
if (has_avx()) return AVX;
|
||
|
if (has_sse42()) return SSE42;
|
||
|
if (has_sse41()) return SSE41;
|
||
|
if (has_ssse3()) return SSSE3;
|
||
|
if (has_sse3()) return SSE3;
|
||
|
if (has_sse2()) return SSE2;
|
||
|
if (has_sse()) return SSE;
|
||
|
return PENTIUM;
|
||
|
}
|
||
|
|
||
|
} // namespace base
|