Nagram/TMessagesProj/jni/webrtc/base/time/time_mac.cc

220 lines
7.4 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/time/time.h"
#include <CoreFoundation/CFDate.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <time.h>
#include "base/logging.h"
#include "base/mac/mach_logging.h"
#include "base/mac/scoped_cftyperef.h"
#include "base/mac/scoped_mach_port.h"
#include "base/numerics/safe_conversions.h"
#include "base/stl_util.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
#if defined(OS_IOS)
#include <time.h>
#include "base/ios/ios_util.h"
#endif
namespace {
#if defined(OS_MACOSX) && !defined(OS_IOS)
int64_t MachAbsoluteTimeToTicks(uint64_t mach_absolute_time) {
static mach_timebase_info_data_t timebase_info;
if (timebase_info.denom == 0) {
// Zero-initialization of statics guarantees that denom will be 0 before
// calling mach_timebase_info. mach_timebase_info will never set denom to
// 0 as that would be invalid, so the zero-check can be used to determine
// whether mach_timebase_info has already been called. This is
// recommended by Apple's QA1398.
kern_return_t kr = mach_timebase_info(&timebase_info);
MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info";
}
// timebase_info converts absolute time tick units into nanoseconds. Convert
// to microseconds up front to stave off overflows.
base::CheckedNumeric<uint64_t> result(mach_absolute_time /
base::Time::kNanosecondsPerMicrosecond);
result *= timebase_info.numer;
result /= timebase_info.denom;
// Don't bother with the rollover handling that the Windows version does.
// With numer and denom = 1 (the expected case), the 64-bit absolute time
// reported in nanoseconds is enough to last nearly 585 years.
return base::checked_cast<int64_t>(result.ValueOrDie());
}
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
// Returns monotonically growing number of ticks in microseconds since some
// unspecified starting point.
int64_t ComputeCurrentTicks() {
#if defined(OS_IOS)
// iOS 10 supports clock_gettime(CLOCK_MONOTONIC, ...), which is
// around 15 times faster than sysctl() call. Use it if possible;
// otherwise, fall back to sysctl().
if (__builtin_available(iOS 10, *)) {
struct timespec tp;
if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) {
return (int64_t)tp.tv_sec * 1000000 + tp.tv_nsec / 1000;
}
}
// On iOS mach_absolute_time stops while the device is sleeping. Instead use
// now - KERN_BOOTTIME to get a time difference that is not impacted by clock
// changes. KERN_BOOTTIME will be updated by the system whenever the system
// clock change.
struct timeval boottime;
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
size_t size = sizeof(boottime);
int kr = sysctl(mib, base::size(mib), &boottime, &size, nullptr, 0);
DCHECK_EQ(KERN_SUCCESS, kr);
base::TimeDelta time_difference =
base::subtle::TimeNowIgnoringOverride() -
(base::Time::FromTimeT(boottime.tv_sec) +
base::TimeDelta::FromMicroseconds(boottime.tv_usec));
return time_difference.InMicroseconds();
#else
// mach_absolute_time is it when it comes to ticks on the Mac. Other calls
// with less precision (such as TickCount) just call through to
// mach_absolute_time.
return MachAbsoluteTimeToTicks(mach_absolute_time());
#endif // defined(OS_IOS)
}
int64_t ComputeThreadTicks() {
#if defined(OS_IOS)
NOTREACHED();
return 0;
#else
// The pthreads library keeps a cached reference to the thread port, which
// does not have to be released like mach_thread_self() does.
mach_port_t thread_port = pthread_mach_thread_np(pthread_self());
if (thread_port == MACH_PORT_NULL) {
DLOG(ERROR) << "Failed to get pthread_mach_thread_np()";
return 0;
}
mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT;
thread_basic_info_data_t thread_info_data;
kern_return_t kr = thread_info(
thread_port,
THREAD_BASIC_INFO,
reinterpret_cast<thread_info_t>(&thread_info_data),
&thread_info_count);
MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info";
base::CheckedNumeric<int64_t> absolute_micros(
thread_info_data.user_time.seconds +
thread_info_data.system_time.seconds);
absolute_micros *= base::Time::kMicrosecondsPerSecond;
absolute_micros += (thread_info_data.user_time.microseconds +
thread_info_data.system_time.microseconds);
return absolute_micros.ValueOrDie();
#endif // defined(OS_IOS)
}
} // namespace
namespace base {
// The Time routines in this file use Mach and CoreFoundation APIs, since the
// POSIX definition of time_t in Mac OS X wraps around after 2038--and
// there are already cookie expiration dates, etc., past that time out in
// the field. Using CFDate prevents that problem, and using mach_absolute_time
// for TimeTicks gives us nice high-resolution interval timing.
// Time -----------------------------------------------------------------------
namespace subtle {
Time TimeNowIgnoringOverride() {
return Time::FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent());
}
Time TimeNowFromSystemTimeIgnoringOverride() {
// Just use TimeNowIgnoringOverride() because it returns the system time.
return TimeNowIgnoringOverride();
}
} // namespace subtle
// static
Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) {
static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
"CFAbsoluteTime must have an infinity value");
if (t == 0)
return Time(); // Consider 0 as a null Time.
if (t == std::numeric_limits<CFAbsoluteTime>::infinity())
return Max();
return Time(static_cast<int64_t>((t + kCFAbsoluteTimeIntervalSince1970) *
kMicrosecondsPerSecond) +
kTimeTToMicrosecondsOffset);
}
CFAbsoluteTime Time::ToCFAbsoluteTime() const {
static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
"CFAbsoluteTime must have an infinity value");
if (is_null())
return 0; // Consider 0 as a null Time.
if (is_max())
return std::numeric_limits<CFAbsoluteTime>::infinity();
return (static_cast<CFAbsoluteTime>(us_ - kTimeTToMicrosecondsOffset) /
kMicrosecondsPerSecond) -
kCFAbsoluteTimeIntervalSince1970;
}
// TimeTicks ------------------------------------------------------------------
namespace subtle {
TimeTicks TimeTicksNowIgnoringOverride() {
return TimeTicks() + TimeDelta::FromMicroseconds(ComputeCurrentTicks());
}
} // namespace subtle
// static
bool TimeTicks::IsHighResolution() {
return true;
}
// static
bool TimeTicks::IsConsistentAcrossProcesses() {
return true;
}
#if defined(OS_MACOSX) && !defined(OS_IOS)
// static
TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) {
return TimeTicks(MachAbsoluteTimeToTicks(mach_absolute_time));
}
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
// static
TimeTicks::Clock TimeTicks::GetClock() {
#if defined(OS_IOS)
return Clock::IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME;
#else
return Clock::MAC_MACH_ABSOLUTE_TIME;
#endif // defined(OS_IOS)
}
// ThreadTicks ----------------------------------------------------------------
namespace subtle {
ThreadTicks ThreadTicksNowIgnoringOverride() {
return ThreadTicks() + TimeDelta::FromMicroseconds(ComputeThreadTicks());
}
} // namespace subtle
} // namespace base