Nagram/TMessagesProj/jni/webrtc/modules/congestion_controller/pcc/bitrate_controller.cc

140 lines
5.8 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/pcc/bitrate_controller.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <memory>
#include <utility>
#include <vector>
namespace webrtc {
namespace pcc {
PccBitrateController::PccBitrateController(double initial_conversion_factor,
double initial_dynamic_boundary,
double dynamic_boundary_increment,
double rtt_gradient_coefficient,
double loss_coefficient,
double throughput_coefficient,
double throughput_power,
double rtt_gradient_threshold,
double delay_gradient_negative_bound)
: PccBitrateController(initial_conversion_factor,
initial_dynamic_boundary,
dynamic_boundary_increment,
std::make_unique<ModifiedVivaceUtilityFunction>(
rtt_gradient_coefficient,
loss_coefficient,
throughput_coefficient,
throughput_power,
rtt_gradient_threshold,
delay_gradient_negative_bound)) {}
PccBitrateController::PccBitrateController(
double initial_conversion_factor,
double initial_dynamic_boundary,
double dynamic_boundary_increment,
std::unique_ptr<PccUtilityFunctionInterface> utility_function)
: consecutive_boundary_adjustments_number_(0),
initial_dynamic_boundary_(initial_dynamic_boundary),
dynamic_boundary_increment_(dynamic_boundary_increment),
utility_function_(std::move(utility_function)),
step_size_adjustments_number_(0),
initial_conversion_factor_(initial_conversion_factor) {}
PccBitrateController::~PccBitrateController() = default;
double PccBitrateController::ComputeStepSize(double utility_gradient) {
// Computes number of consecutive step size adjustments.
if (utility_gradient > 0) {
step_size_adjustments_number_ =
std::max<int64_t>(step_size_adjustments_number_ + 1, 1);
} else if (utility_gradient < 0) {
step_size_adjustments_number_ =
std::min<int64_t>(step_size_adjustments_number_ - 1, -1);
} else {
step_size_adjustments_number_ = 0;
}
// Computes step size amplifier.
int64_t step_size_amplifier = 1;
if (std::abs(step_size_adjustments_number_) <= 3) {
step_size_amplifier =
std::max<int64_t>(std::abs(step_size_adjustments_number_), 1);
} else {
step_size_amplifier = 2 * std::abs(step_size_adjustments_number_) - 3;
}
return step_size_amplifier * initial_conversion_factor_;
}
double PccBitrateController::ApplyDynamicBoundary(double rate_change,
double bitrate) {
double rate_change_abs = std::abs(rate_change);
int64_t rate_change_sign = (rate_change > 0) ? 1 : -1;
if (consecutive_boundary_adjustments_number_ * rate_change_sign < 0) {
consecutive_boundary_adjustments_number_ = 0;
}
double dynamic_change_boundary =
initial_dynamic_boundary_ +
std::abs(consecutive_boundary_adjustments_number_) *
dynamic_boundary_increment_;
double boundary = bitrate * dynamic_change_boundary;
if (rate_change_abs > boundary) {
consecutive_boundary_adjustments_number_ += rate_change_sign;
return boundary * rate_change_sign;
}
// Rate change smaller than boundary. Reset boundary to the smallest possible
// that would allow the change.
while (rate_change_abs <= boundary &&
consecutive_boundary_adjustments_number_ * rate_change_sign > 0) {
consecutive_boundary_adjustments_number_ -= rate_change_sign;
dynamic_change_boundary =
initial_dynamic_boundary_ +
std::abs(consecutive_boundary_adjustments_number_) *
dynamic_boundary_increment_;
boundary = bitrate * dynamic_change_boundary;
}
consecutive_boundary_adjustments_number_ += rate_change_sign;
return rate_change;
}
absl::optional<DataRate>
PccBitrateController::ComputeRateUpdateForSlowStartMode(
const PccMonitorInterval& monitor_interval) {
double utility_value = utility_function_->Compute(monitor_interval);
if (previous_utility_.has_value() && utility_value <= previous_utility_) {
return absl::nullopt;
}
previous_utility_ = utility_value;
return monitor_interval.GetTargetSendingRate();
}
DataRate PccBitrateController::ComputeRateUpdateForOnlineLearningMode(
const std::vector<PccMonitorInterval>& intervals,
DataRate bandwith_estimate) {
double first_utility = utility_function_->Compute(intervals[0]);
double second_utility = utility_function_->Compute(intervals[1]);
double first_bitrate_bps = intervals[0].GetTargetSendingRate().bps();
double second_bitrate_bps = intervals[1].GetTargetSendingRate().bps();
double gradient = (first_utility - second_utility) /
(first_bitrate_bps - second_bitrate_bps);
double rate_change_bps = gradient * ComputeStepSize(gradient); // delta_r
rate_change_bps =
ApplyDynamicBoundary(rate_change_bps, bandwith_estimate.bps());
return DataRate::BitsPerSec(
std::max(0.0, bandwith_estimate.bps() + rate_change_bps));
}
} // namespace pcc
} // namespace webrtc