Nagram/TMessagesProj/jni/webrtc/modules/video_coding/decoding_state.cc

368 lines
12 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/decoding_state.h"
#include "common_video/h264/h264_common.h"
#include "modules/include/module_common_types_public.h"
#include "modules/video_coding/frame_buffer.h"
#include "modules/video_coding/jitter_buffer_common.h"
#include "modules/video_coding/packet.h"
#include "rtc_base/logging.h"
namespace webrtc {
VCMDecodingState::VCMDecodingState()
: sequence_num_(0),
time_stamp_(0),
picture_id_(kNoPictureId),
temporal_id_(kNoTemporalIdx),
tl0_pic_id_(kNoTl0PicIdx),
full_sync_(true),
in_initial_state_(true) {
memset(frame_decoded_, 0, sizeof(frame_decoded_));
}
VCMDecodingState::~VCMDecodingState() {}
void VCMDecodingState::Reset() {
// TODO(mikhal): Verify - not always would want to reset the sync
sequence_num_ = 0;
time_stamp_ = 0;
picture_id_ = kNoPictureId;
temporal_id_ = kNoTemporalIdx;
tl0_pic_id_ = kNoTl0PicIdx;
full_sync_ = true;
in_initial_state_ = true;
memset(frame_decoded_, 0, sizeof(frame_decoded_));
received_sps_.clear();
received_pps_.clear();
}
uint32_t VCMDecodingState::time_stamp() const {
return time_stamp_;
}
uint16_t VCMDecodingState::sequence_num() const {
return sequence_num_;
}
bool VCMDecodingState::IsOldFrame(const VCMFrameBuffer* frame) const {
assert(frame != NULL);
if (in_initial_state_)
return false;
return !IsNewerTimestamp(frame->Timestamp(), time_stamp_);
}
bool VCMDecodingState::IsOldPacket(const VCMPacket* packet) const {
assert(packet != NULL);
if (in_initial_state_)
return false;
return !IsNewerTimestamp(packet->timestamp, time_stamp_);
}
void VCMDecodingState::SetState(const VCMFrameBuffer* frame) {
assert(frame != NULL && frame->GetHighSeqNum() >= 0);
if (!UsingFlexibleMode(frame))
UpdateSyncState(frame);
sequence_num_ = static_cast<uint16_t>(frame->GetHighSeqNum());
time_stamp_ = frame->Timestamp();
picture_id_ = frame->PictureId();
temporal_id_ = frame->TemporalId();
tl0_pic_id_ = frame->Tl0PicId();
for (const NaluInfo& nalu : frame->GetNaluInfos()) {
if (nalu.type == H264::NaluType::kPps) {
if (nalu.pps_id < 0) {
RTC_LOG(LS_WARNING) << "Received pps without pps id.";
} else if (nalu.sps_id < 0) {
RTC_LOG(LS_WARNING) << "Received pps without sps id.";
} else {
received_pps_[nalu.pps_id] = nalu.sps_id;
}
} else if (nalu.type == H264::NaluType::kSps) {
if (nalu.sps_id < 0) {
RTC_LOG(LS_WARNING) << "Received sps without sps id.";
} else {
received_sps_.insert(nalu.sps_id);
}
}
}
if (UsingFlexibleMode(frame)) {
uint16_t frame_index = picture_id_ % kFrameDecodedLength;
if (in_initial_state_) {
frame_decoded_cleared_to_ = frame_index;
} else if (frame->FrameType() == VideoFrameType::kVideoFrameKey) {
memset(frame_decoded_, 0, sizeof(frame_decoded_));
frame_decoded_cleared_to_ = frame_index;
} else {
if (AheadOfFramesDecodedClearedTo(frame_index)) {
while (frame_decoded_cleared_to_ != frame_index) {
frame_decoded_cleared_to_ =
(frame_decoded_cleared_to_ + 1) % kFrameDecodedLength;
frame_decoded_[frame_decoded_cleared_to_] = false;
}
}
}
frame_decoded_[frame_index] = true;
}
in_initial_state_ = false;
}
void VCMDecodingState::CopyFrom(const VCMDecodingState& state) {
sequence_num_ = state.sequence_num_;
time_stamp_ = state.time_stamp_;
picture_id_ = state.picture_id_;
temporal_id_ = state.temporal_id_;
tl0_pic_id_ = state.tl0_pic_id_;
full_sync_ = state.full_sync_;
in_initial_state_ = state.in_initial_state_;
frame_decoded_cleared_to_ = state.frame_decoded_cleared_to_;
memcpy(frame_decoded_, state.frame_decoded_, sizeof(frame_decoded_));
received_sps_ = state.received_sps_;
received_pps_ = state.received_pps_;
}
bool VCMDecodingState::UpdateEmptyFrame(const VCMFrameBuffer* frame) {
bool empty_packet = frame->GetHighSeqNum() == frame->GetLowSeqNum();
if (in_initial_state_ && empty_packet) {
// Drop empty packets as long as we are in the initial state.
return true;
}
if ((empty_packet && ContinuousSeqNum(frame->GetHighSeqNum())) ||
ContinuousFrame(frame)) {
// Continuous empty packets or continuous frames can be dropped if we
// advance the sequence number.
sequence_num_ = frame->GetHighSeqNum();
time_stamp_ = frame->Timestamp();
return true;
}
return false;
}
void VCMDecodingState::UpdateOldPacket(const VCMPacket* packet) {
assert(packet != NULL);
if (packet->timestamp == time_stamp_) {
// Late packet belonging to the last decoded frame - make sure we update the
// last decoded sequence number.
sequence_num_ = LatestSequenceNumber(packet->seqNum, sequence_num_);
}
}
void VCMDecodingState::SetSeqNum(uint16_t new_seq_num) {
sequence_num_ = new_seq_num;
}
bool VCMDecodingState::in_initial_state() const {
return in_initial_state_;
}
bool VCMDecodingState::full_sync() const {
return full_sync_;
}
void VCMDecodingState::UpdateSyncState(const VCMFrameBuffer* frame) {
if (in_initial_state_)
return;
if (frame->TemporalId() == kNoTemporalIdx ||
frame->Tl0PicId() == kNoTl0PicIdx) {
full_sync_ = true;
} else if (frame->FrameType() == VideoFrameType::kVideoFrameKey ||
frame->LayerSync()) {
full_sync_ = true;
} else if (full_sync_) {
// Verify that we are still in sync.
// Sync will be broken if continuity is true for layers but not for the
// other methods (PictureId and SeqNum).
if (UsingPictureId(frame)) {
// First check for a valid tl0PicId.
if (frame->Tl0PicId() - tl0_pic_id_ > 1) {
full_sync_ = false;
} else {
full_sync_ = ContinuousPictureId(frame->PictureId());
}
} else {
full_sync_ =
ContinuousSeqNum(static_cast<uint16_t>(frame->GetLowSeqNum()));
}
}
}
bool VCMDecodingState::ContinuousFrame(const VCMFrameBuffer* frame) const {
// Check continuity based on the following hierarchy:
// - Temporal layers (stop here if out of sync).
// - Picture Id when available.
// - Sequence numbers.
// Return true when in initial state.
// Note that when a method is not applicable it will return false.
assert(frame != NULL);
// A key frame is always considered continuous as it doesn't refer to any
// frames and therefore won't introduce any errors even if prior frames are
// missing.
if (frame->FrameType() == VideoFrameType::kVideoFrameKey &&
HaveSpsAndPps(frame->GetNaluInfos())) {
return true;
}
// When in the initial state we always require a key frame to start decoding.
if (in_initial_state_)
return false;
if (ContinuousLayer(frame->TemporalId(), frame->Tl0PicId()))
return true;
// tl0picId is either not used, or should remain unchanged.
if (frame->Tl0PicId() != tl0_pic_id_)
return false;
// Base layers are not continuous or temporal layers are inactive.
// In the presence of temporal layers, check for Picture ID/sequence number
// continuity if sync can be restored by this frame.
if (!full_sync_ && !frame->LayerSync())
return false;
if (UsingPictureId(frame)) {
if (UsingFlexibleMode(frame)) {
return ContinuousFrameRefs(frame);
} else {
return ContinuousPictureId(frame->PictureId());
}
} else {
return ContinuousSeqNum(static_cast<uint16_t>(frame->GetLowSeqNum())) &&
HaveSpsAndPps(frame->GetNaluInfos());
}
}
bool VCMDecodingState::ContinuousPictureId(int picture_id) const {
int next_picture_id = picture_id_ + 1;
if (picture_id < picture_id_) {
// Wrap
if (picture_id_ >= 0x80) {
// 15 bits used for picture id
return ((next_picture_id & 0x7FFF) == picture_id);
} else {
// 7 bits used for picture id
return ((next_picture_id & 0x7F) == picture_id);
}
}
// No wrap
return (next_picture_id == picture_id);
}
bool VCMDecodingState::ContinuousSeqNum(uint16_t seq_num) const {
return seq_num == static_cast<uint16_t>(sequence_num_ + 1);
}
bool VCMDecodingState::ContinuousLayer(int temporal_id, int tl0_pic_id) const {
// First, check if applicable.
if (temporal_id == kNoTemporalIdx || tl0_pic_id == kNoTl0PicIdx)
return false;
// If this is the first frame to use temporal layers, make sure we start
// from base.
else if (tl0_pic_id_ == kNoTl0PicIdx && temporal_id_ == kNoTemporalIdx &&
temporal_id == 0)
return true;
// Current implementation: Look for base layer continuity.
if (temporal_id != 0)
return false;
return (static_cast<uint8_t>(tl0_pic_id_ + 1) == tl0_pic_id);
}
bool VCMDecodingState::ContinuousFrameRefs(const VCMFrameBuffer* frame) const {
uint8_t num_refs = frame->CodecSpecific()->codecSpecific.VP9.num_ref_pics;
for (uint8_t r = 0; r < num_refs; ++r) {
uint16_t frame_ref = frame->PictureId() -
frame->CodecSpecific()->codecSpecific.VP9.p_diff[r];
uint16_t frame_index = frame_ref % kFrameDecodedLength;
if (AheadOfFramesDecodedClearedTo(frame_index) ||
!frame_decoded_[frame_index]) {
return false;
}
}
return true;
}
bool VCMDecodingState::UsingPictureId(const VCMFrameBuffer* frame) const {
return (frame->PictureId() != kNoPictureId && picture_id_ != kNoPictureId);
}
bool VCMDecodingState::UsingFlexibleMode(const VCMFrameBuffer* frame) const {
bool is_flexible_mode =
frame->CodecSpecific()->codecType == kVideoCodecVP9 &&
frame->CodecSpecific()->codecSpecific.VP9.flexible_mode;
if (is_flexible_mode && frame->PictureId() == kNoPictureId) {
RTC_LOG(LS_WARNING) << "Frame is marked as using flexible mode but no"
"picture id is set.";
return false;
}
return is_flexible_mode;
}
// TODO(philipel): change how check work, this check practially
// limits the max p_diff to 64.
bool VCMDecodingState::AheadOfFramesDecodedClearedTo(uint16_t index) const {
// No way of knowing for sure if we are actually ahead of
// frame_decoded_cleared_to_. We just make the assumption
// that we are not trying to reference back to a very old
// index, but instead are referencing a newer index.
uint16_t diff =
index > frame_decoded_cleared_to_
? kFrameDecodedLength - (index - frame_decoded_cleared_to_)
: frame_decoded_cleared_to_ - index;
return diff > kFrameDecodedLength / 2;
}
bool VCMDecodingState::HaveSpsAndPps(const std::vector<NaluInfo>& nalus) const {
std::set<int> new_sps;
std::map<int, int> new_pps;
for (const NaluInfo& nalu : nalus) {
// Check if this nalu actually contains sps/pps information or dependencies.
if (nalu.sps_id == -1 && nalu.pps_id == -1)
continue;
switch (nalu.type) {
case H264::NaluType::kPps:
if (nalu.pps_id < 0) {
RTC_LOG(LS_WARNING) << "Received pps without pps id.";
} else if (nalu.sps_id < 0) {
RTC_LOG(LS_WARNING) << "Received pps without sps id.";
} else {
new_pps[nalu.pps_id] = nalu.sps_id;
}
break;
case H264::NaluType::kSps:
if (nalu.sps_id < 0) {
RTC_LOG(LS_WARNING) << "Received sps without sps id.";
} else {
new_sps.insert(nalu.sps_id);
}
break;
default: {
int needed_sps = -1;
auto pps_it = new_pps.find(nalu.pps_id);
if (pps_it != new_pps.end()) {
needed_sps = pps_it->second;
} else {
auto pps_it2 = received_pps_.find(nalu.pps_id);
if (pps_it2 == received_pps_.end()) {
return false;
}
needed_sps = pps_it2->second;
}
if (new_sps.find(needed_sps) == new_sps.end() &&
received_sps_.find(needed_sps) == received_sps_.end()) {
return false;
}
break;
}
}
}
return true;
}
} // namespace webrtc