Nagram/TMessagesProj/jni/voip/webrtc/rtc_base/bit_buffer.cc

404 lines
13 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
/*
* Copyright 2015 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/bit_buffer.h"
#include <algorithm>
#include <limits>
#include "rtc_base/checks.h"
namespace {
// Returns the lowest (right-most) |bit_count| bits in |byte|.
uint8_t LowestBits(uint8_t byte, size_t bit_count) {
RTC_DCHECK_LE(bit_count, 8);
return byte & ((1 << bit_count) - 1);
}
// Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the
// lowest bits (to the right).
uint8_t HighestBits(uint8_t byte, size_t bit_count) {
RTC_DCHECK_LE(bit_count, 8);
uint8_t shift = 8 - static_cast<uint8_t>(bit_count);
uint8_t mask = 0xFF << shift;
return (byte & mask) >> shift;
}
// Returns the highest byte of |val| in a uint8_t.
uint8_t HighestByte(uint64_t val) {
return static_cast<uint8_t>(val >> 56);
}
// Returns the result of writing partial data from |source|, of
// |source_bit_count| size in the highest bits, to |target| at
// |target_bit_offset| from the highest bit.
uint8_t WritePartialByte(uint8_t source,
size_t source_bit_count,
uint8_t target,
size_t target_bit_offset) {
RTC_DCHECK(target_bit_offset < 8);
RTC_DCHECK(source_bit_count < 9);
RTC_DCHECK(source_bit_count <= (8 - target_bit_offset));
// Generate a mask for just the bits we're going to overwrite, so:
uint8_t mask =
// The number of bits we want, in the most significant bits...
static_cast<uint8_t>(0xFF << (8 - source_bit_count))
// ...shifted over to the target offset from the most signficant bit.
>> target_bit_offset;
// We want the target, with the bits we'll overwrite masked off, or'ed with
// the bits from the source we want.
return (target & ~mask) | (source >> target_bit_offset);
}
// Counts the number of bits used in the binary representation of val.
size_t CountBits(uint64_t val) {
size_t bit_count = 0;
while (val != 0) {
bit_count++;
val >>= 1;
}
return bit_count;
}
} // namespace
namespace rtc {
BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count)
: bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() {
RTC_DCHECK(static_cast<uint64_t>(byte_count_) <=
std::numeric_limits<uint32_t>::max());
}
uint64_t BitBuffer::RemainingBitCount() const {
return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_;
}
2021-06-25 00:43:10 +00:00
bool BitBuffer::ReadUInt8(uint8_t& val) {
2020-08-14 16:58:22 +00:00
uint32_t bit_val;
2021-06-25 00:43:10 +00:00
if (!ReadBits(sizeof(uint8_t) * 8, bit_val)) {
2020-08-14 16:58:22 +00:00
return false;
}
RTC_DCHECK(bit_val <= std::numeric_limits<uint8_t>::max());
2021-06-25 00:43:10 +00:00
val = static_cast<uint8_t>(bit_val);
2020-08-14 16:58:22 +00:00
return true;
}
2021-06-25 00:43:10 +00:00
bool BitBuffer::ReadUInt16(uint16_t& val) {
2020-08-14 16:58:22 +00:00
uint32_t bit_val;
2021-06-25 00:43:10 +00:00
if (!ReadBits(sizeof(uint16_t) * 8, bit_val)) {
2020-08-14 16:58:22 +00:00
return false;
}
RTC_DCHECK(bit_val <= std::numeric_limits<uint16_t>::max());
2021-06-25 00:43:10 +00:00
val = static_cast<uint16_t>(bit_val);
2020-08-14 16:58:22 +00:00
return true;
}
2021-06-25 00:43:10 +00:00
bool BitBuffer::ReadUInt32(uint32_t& val) {
return ReadBits(sizeof(uint32_t) * 8, val);
2020-08-14 16:58:22 +00:00
}
2021-06-25 00:43:10 +00:00
bool BitBuffer::PeekBits(size_t bit_count, uint32_t& val) {
2020-08-14 16:58:22 +00:00
// TODO(nisse): Could allow bit_count == 0 and always return success. But
// current code reads one byte beyond end of buffer in the case that
// RemainingBitCount() == 0 and bit_count == 0.
RTC_DCHECK(bit_count > 0);
2021-06-25 00:43:10 +00:00
if (bit_count > RemainingBitCount() || bit_count > 32) {
2020-08-14 16:58:22 +00:00
return false;
}
const uint8_t* bytes = bytes_ + byte_offset_;
size_t remaining_bits_in_current_byte = 8 - bit_offset_;
uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
// If we're reading fewer bits than what's left in the current byte, just
// return the portion of this byte that we need.
if (bit_count < remaining_bits_in_current_byte) {
2021-06-25 00:43:10 +00:00
val = HighestBits(bits, bit_offset_ + bit_count);
2020-08-14 16:58:22 +00:00
return true;
}
// Otherwise, subtract what we've read from the bit count and read as many
// full bytes as we can into bits.
bit_count -= remaining_bits_in_current_byte;
while (bit_count >= 8) {
bits = (bits << 8) | *bytes++;
bit_count -= 8;
}
// Whatever we have left is smaller than a byte, so grab just the bits we need
// and shift them into the lowest bits.
if (bit_count > 0) {
bits <<= bit_count;
bits |= HighestBits(*bytes, bit_count);
}
2021-06-25 00:43:10 +00:00
val = bits;
2020-08-14 16:58:22 +00:00
return true;
}
2021-06-25 00:43:10 +00:00
bool BitBuffer::PeekBits(size_t bit_count, uint64_t& val) {
// TODO(nisse): Could allow bit_count == 0 and always return success. But
// current code reads one byte beyond end of buffer in the case that
// RemainingBitCount() == 0 and bit_count == 0.
RTC_DCHECK(bit_count > 0);
if (bit_count > RemainingBitCount() || bit_count > 64) {
return false;
}
const uint8_t* bytes = bytes_ + byte_offset_;
size_t remaining_bits_in_current_byte = 8 - bit_offset_;
uint64_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
// If we're reading fewer bits than what's left in the current byte, just
// return the portion of this byte that we need.
if (bit_count < remaining_bits_in_current_byte) {
val = HighestBits(bits, bit_offset_ + bit_count);
return true;
}
// Otherwise, subtract what we've read from the bit count and read as many
// full bytes as we can into bits.
bit_count -= remaining_bits_in_current_byte;
while (bit_count >= 8) {
bits = (bits << 8) | *bytes++;
bit_count -= 8;
}
// Whatever we have left is smaller than a byte, so grab just the bits we need
// and shift them into the lowest bits.
if (bit_count > 0) {
bits <<= bit_count;
bits |= HighestBits(*bytes, bit_count);
}
val = bits;
return true;
}
bool BitBuffer::ReadBits(size_t bit_count, uint32_t& val) {
return PeekBits(bit_count, val) && ConsumeBits(bit_count);
}
bool BitBuffer::ReadBits(size_t bit_count, uint64_t& val) {
return PeekBits(bit_count, val) && ConsumeBits(bit_count);
2020-08-14 16:58:22 +00:00
}
bool BitBuffer::ConsumeBytes(size_t byte_count) {
return ConsumeBits(byte_count * 8);
}
bool BitBuffer::ConsumeBits(size_t bit_count) {
if (bit_count > RemainingBitCount()) {
return false;
}
byte_offset_ += (bit_offset_ + bit_count) / 8;
bit_offset_ = (bit_offset_ + bit_count) % 8;
return true;
}
2021-06-25 00:43:10 +00:00
bool BitBuffer::ReadNonSymmetric(uint32_t num_values, uint32_t& val) {
2020-08-14 16:58:22 +00:00
RTC_DCHECK_GT(num_values, 0);
RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
if (num_values == 1) {
// When there is only one possible value, it requires zero bits to store it.
// But ReadBits doesn't support reading zero bits.
2021-06-25 00:43:10 +00:00
val = 0;
2020-08-14 16:58:22 +00:00
return true;
}
size_t count_bits = CountBits(num_values);
uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;
2021-06-25 00:43:10 +00:00
if (!ReadBits(count_bits - 1, val)) {
2020-08-14 16:58:22 +00:00
return false;
}
2021-06-25 00:43:10 +00:00
if (val < num_min_bits_values) {
2020-08-14 16:58:22 +00:00
return true;
}
uint32_t extra_bit;
2021-06-25 00:43:10 +00:00
if (!ReadBits(/*bit_count=*/1, extra_bit)) {
2020-08-14 16:58:22 +00:00
return false;
}
2021-06-25 00:43:10 +00:00
val = (val << 1) + extra_bit - num_min_bits_values;
2020-08-14 16:58:22 +00:00
return true;
}
2021-06-25 00:43:10 +00:00
bool BitBuffer::ReadExponentialGolomb(uint32_t& val) {
2020-08-14 16:58:22 +00:00
// Store off the current byte/bit offset, in case we want to restore them due
// to a failed parse.
size_t original_byte_offset = byte_offset_;
size_t original_bit_offset = bit_offset_;
// Count the number of leading 0 bits by peeking/consuming them one at a time.
size_t zero_bit_count = 0;
uint32_t peeked_bit;
2021-06-25 00:43:10 +00:00
while (PeekBits(1, peeked_bit) && peeked_bit == 0) {
2020-08-14 16:58:22 +00:00
zero_bit_count++;
ConsumeBits(1);
}
// We should either be at the end of the stream, or the next bit should be 1.
2021-06-25 00:43:10 +00:00
RTC_DCHECK(!PeekBits(1, peeked_bit) || peeked_bit == 1);
2020-08-14 16:58:22 +00:00
// The bit count of the value is the number of zeros + 1. Make sure that many
// bits fits in a uint32_t and that we have enough bits left for it, and then
// read the value.
size_t value_bit_count = zero_bit_count + 1;
2021-06-25 00:43:10 +00:00
if (value_bit_count > 32 || !ReadBits(value_bit_count, val)) {
2020-08-14 16:58:22 +00:00
RTC_CHECK(Seek(original_byte_offset, original_bit_offset));
return false;
}
2021-06-25 00:43:10 +00:00
val -= 1;
2020-08-14 16:58:22 +00:00
return true;
}
2021-06-25 00:43:10 +00:00
bool BitBuffer::ReadSignedExponentialGolomb(int32_t& val) {
2020-08-14 16:58:22 +00:00
uint32_t unsigned_val;
2021-06-25 00:43:10 +00:00
if (!ReadExponentialGolomb(unsigned_val)) {
2020-08-14 16:58:22 +00:00
return false;
}
if ((unsigned_val & 1) == 0) {
2021-06-25 00:43:10 +00:00
val = -static_cast<int32_t>(unsigned_val / 2);
2020-08-14 16:58:22 +00:00
} else {
2021-06-25 00:43:10 +00:00
val = (unsigned_val + 1) / 2;
2020-08-14 16:58:22 +00:00
}
return true;
}
void BitBuffer::GetCurrentOffset(size_t* out_byte_offset,
size_t* out_bit_offset) {
RTC_CHECK(out_byte_offset != nullptr);
RTC_CHECK(out_bit_offset != nullptr);
*out_byte_offset = byte_offset_;
*out_bit_offset = bit_offset_;
}
bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) {
if (byte_offset > byte_count_ || bit_offset > 7 ||
(byte_offset == byte_count_ && bit_offset > 0)) {
return false;
}
byte_offset_ = byte_offset;
bit_offset_ = bit_offset;
return true;
}
BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count)
: BitBuffer(bytes, byte_count), writable_bytes_(bytes) {}
bool BitBufferWriter::WriteUInt8(uint8_t val) {
return WriteBits(val, sizeof(uint8_t) * 8);
}
bool BitBufferWriter::WriteUInt16(uint16_t val) {
return WriteBits(val, sizeof(uint16_t) * 8);
}
bool BitBufferWriter::WriteUInt32(uint32_t val) {
return WriteBits(val, sizeof(uint32_t) * 8);
}
bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) {
if (bit_count > RemainingBitCount()) {
return false;
}
size_t total_bits = bit_count;
// For simplicity, push the bits we want to read from val to the highest bits.
val <<= (sizeof(uint64_t) * 8 - bit_count);
uint8_t* bytes = writable_bytes_ + byte_offset_;
// The first byte is relatively special; the bit offset to write to may put us
// in the middle of the byte, and the total bit count to write may require we
// save the bits at the end of the byte.
size_t remaining_bits_in_current_byte = 8 - bit_offset_;
size_t bits_in_first_byte =
std::min(bit_count, remaining_bits_in_current_byte);
*bytes = WritePartialByte(HighestByte(val), bits_in_first_byte, *bytes,
bit_offset_);
if (bit_count <= remaining_bits_in_current_byte) {
// Nothing left to write, so quit early.
return ConsumeBits(total_bits);
}
// Subtract what we've written from the bit count, shift it off the value, and
// write the remaining full bytes.
val <<= bits_in_first_byte;
bytes++;
bit_count -= bits_in_first_byte;
while (bit_count >= 8) {
*bytes++ = HighestByte(val);
val <<= 8;
bit_count -= 8;
}
// Last byte may also be partial, so write the remaining bits from the top of
// val.
if (bit_count > 0) {
*bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0);
}
// All done! Consume the bits we've written.
return ConsumeBits(total_bits);
}
bool BitBufferWriter::WriteNonSymmetric(uint32_t val, uint32_t num_values) {
RTC_DCHECK_LT(val, num_values);
RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
if (num_values == 1) {
// When there is only one possible value, it requires zero bits to store it.
// But WriteBits doesn't support writing zero bits.
return true;
}
size_t count_bits = CountBits(num_values);
uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;
return val < num_min_bits_values
? WriteBits(val, count_bits - 1)
: WriteBits(val + num_min_bits_values, count_bits);
}
size_t BitBufferWriter::SizeNonSymmetricBits(uint32_t val,
uint32_t num_values) {
RTC_DCHECK_LT(val, num_values);
RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
size_t count_bits = CountBits(num_values);
uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;
return val < num_min_bits_values ? (count_bits - 1) : count_bits;
}
bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) {
// We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t
// when encoded, so don't support writing it either.
if (val == std::numeric_limits<uint32_t>::max()) {
return false;
}
uint64_t val_to_encode = static_cast<uint64_t>(val) + 1;
// We need to write CountBits(val+1) 0s and then val+1. Since val (as a
// uint64_t) has leading zeros, we can just write the total golomb encoded
// size worth of bits, knowing the value will appear last.
return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1);
}
bool BitBufferWriter::WriteSignedExponentialGolomb(int32_t val) {
if (val == 0) {
return WriteExponentialGolomb(0);
} else if (val > 0) {
uint32_t signed_val = val;
return WriteExponentialGolomb((signed_val * 2) - 1);
} else {
if (val == std::numeric_limits<int32_t>::min())
return false; // Not supported, would cause overflow.
uint32_t signed_val = -val;
return WriteExponentialGolomb(signed_val * 2);
}
}
} // namespace rtc