Nagram/TMessagesProj/jni/voip/webrtc/base/cpu.cc

313 lines
10 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/cpu.h"
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <utility>
#include "base/stl_util.h"
#if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
#include "base/files/file_util.h"
#endif
#if defined(ARCH_CPU_X86_FAMILY)
#if defined(COMPILER_MSVC)
#include <intrin.h>
#include <immintrin.h> // For _xgetbv()
#endif
#endif
namespace base {
#if defined(ARCH_CPU_X86_FAMILY)
namespace internal {
std::tuple<int, int, int, int> ComputeX86FamilyAndModel(
const std::string& vendor,
int signature) {
int family = (signature >> 8) & 0xf;
int model = (signature >> 4) & 0xf;
int ext_family = 0;
int ext_model = 0;
// The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
// specifies the Extended Model is defined only when the Base Family is
// 06h or 0Fh.
// The "AMD CPUID Specification" specifies that the Extended Model is
// defined only when Base Family is 0Fh.
// Both manuals define the display model as
// {ExtendedModel[3:0],BaseModel[3:0]} in that case.
if (family == 0xf || (family == 0x6 && vendor == "GenuineIntel")) {
ext_model = (signature >> 16) & 0xf;
model += ext_model << 4;
}
// Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
// and the "AMD CPUID Specification" specify that the Extended Family is
// defined only when the Base Family is 0Fh.
// Both manuals define the display family as {0000b,BaseFamily[3:0]} +
// ExtendedFamily[7:0] in that case.
if (family == 0xf) {
ext_family = (signature >> 20) & 0xff;
family += ext_family;
}
return {family, model, ext_family, ext_model};
}
} // namespace internal
#endif // defined(ARCH_CPU_X86_FAMILY)
CPU::CPU()
: signature_(0),
type_(0),
family_(0),
model_(0),
stepping_(0),
ext_model_(0),
ext_family_(0),
has_mmx_(false),
has_sse_(false),
has_sse2_(false),
has_sse3_(false),
has_ssse3_(false),
has_sse41_(false),
has_sse42_(false),
has_popcnt_(false),
has_avx_(false),
has_avx2_(false),
has_aesni_(false),
has_non_stop_time_stamp_counter_(false),
is_running_in_vm_(false),
cpu_vendor_("unknown") {
Initialize();
}
namespace {
#if defined(ARCH_CPU_X86_FAMILY)
#if !defined(COMPILER_MSVC)
#if defined(__pic__) && defined(__i386__)
void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile(
"mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
}
#else
void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile("cpuid\n"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
}
#endif
#endif // !defined(COMPILER_MSVC)
// xgetbv returns the value of an Intel Extended Control Register (XCR).
// Currently only XCR0 is defined by Intel so |xcr| should always be zero.
uint64_t xgetbv(uint32_t xcr) {
#if defined(COMPILER_MSVC)
return _xgetbv(xcr);
#else
uint32_t eax, edx;
__asm__ volatile (
"xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
return (static_cast<uint64_t>(edx) << 32) | eax;
#endif // defined(COMPILER_MSVC)
}
#endif // ARCH_CPU_X86_FAMILY
#if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
std::string* CpuInfoBrand() {
static std::string* brand = []() {
// This function finds the value from /proc/cpuinfo under the key "model
// name" or "Processor". "model name" is used in Linux 3.8 and later (3.7
// and later for arm64) and is shown once per CPU. "Processor" is used in
// earler versions and is shown only once at the top of /proc/cpuinfo
// regardless of the number CPUs.
const char kModelNamePrefix[] = "model name\t: ";
const char kProcessorPrefix[] = "Processor\t: ";
std::string contents;
ReadFileToString(FilePath("/proc/cpuinfo"), &contents);
DCHECK(!contents.empty());
std::istringstream iss(contents);
std::string line;
while (std::getline(iss, line)) {
if (line.compare(0, strlen(kModelNamePrefix), kModelNamePrefix) == 0)
return new std::string(line.substr(strlen(kModelNamePrefix)));
if (line.compare(0, strlen(kProcessorPrefix), kProcessorPrefix) == 0)
return new std::string(line.substr(strlen(kProcessorPrefix)));
}
return new std::string();
}();
return brand;
}
#endif // defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) ||
// defined(OS_LINUX))
} // namespace
void CPU::Initialize() {
#if defined(ARCH_CPU_X86_FAMILY)
int cpu_info[4] = {-1};
// This array is used to temporarily hold the vendor name and then the brand
// name. Thus it has to be big enough for both use cases. There are
// static_asserts below for each of the use cases to make sure this array is
// big enough.
char cpu_string[sizeof(cpu_info) * 3 + 1];
// __cpuid with an InfoType argument of 0 returns the number of
// valid Ids in CPUInfo[0] and the CPU identification string in
// the other three array elements. The CPU identification string is
// not in linear order. The code below arranges the information
// in a human readable form. The human readable order is CPUInfo[1] |
// CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
// before using memcpy() to copy these three array elements to |cpu_string|.
__cpuid(cpu_info, 0);
int num_ids = cpu_info[0];
std::swap(cpu_info[2], cpu_info[3]);
static constexpr size_t kVendorNameSize = 3 * sizeof(cpu_info[1]);
static_assert(kVendorNameSize < base::size(cpu_string),
"cpu_string too small");
memcpy(cpu_string, &cpu_info[1], kVendorNameSize);
cpu_string[kVendorNameSize] = '\0';
cpu_vendor_ = cpu_string;
// Interpret CPU feature information.
if (num_ids > 0) {
int cpu_info7[4] = {0};
__cpuid(cpu_info, 1);
if (num_ids >= 7) {
__cpuid(cpu_info7, 7);
}
signature_ = cpu_info[0];
stepping_ = cpu_info[0] & 0xf;
type_ = (cpu_info[0] >> 12) & 0x3;
std::tie(family_, model_, ext_family_, ext_model_) =
internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_);
has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
has_sse_ = (cpu_info[3] & 0x02000000) != 0;
has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
// "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1."
// See https://lwn.net/Articles/301888/
// This is checking for any hypervisor. Hypervisors may choose not to
// announce themselves. Hypervisors trap CPUID and sometimes return
// different results to underlying hardware.
is_running_in_vm_ = (cpu_info[2] & 0x80000000) != 0;
// AVX instructions will generate an illegal instruction exception unless
// a) they are supported by the CPU,
// b) XSAVE is supported by the CPU and
// c) XSAVE is enabled by the kernel.
// See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
//
// In addition, we have observed some crashes with the xgetbv instruction
// even after following Intel's example code. (See crbug.com/375968.)
// Because of that, we also test the XSAVE bit because its description in
// the CPUID documentation suggests that it signals xgetbv support.
has_avx_ =
(cpu_info[2] & 0x10000000) != 0 &&
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
(xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
has_avx2_ = has_avx_ && (cpu_info7[1] & 0x00000020) != 0;
}
// Get the brand string of the cpu.
__cpuid(cpu_info, 0x80000000);
const int max_parameter = cpu_info[0];
static constexpr int kParameterStart = 0x80000002;
static constexpr int kParameterEnd = 0x80000004;
static constexpr int kParameterSize = kParameterEnd - kParameterStart + 1;
static_assert(kParameterSize * sizeof(cpu_info) + 1 == base::size(cpu_string),
"cpu_string has wrong size");
if (max_parameter >= kParameterEnd) {
size_t i = 0;
for (int parameter = kParameterStart; parameter <= kParameterEnd;
++parameter) {
__cpuid(cpu_info, parameter);
memcpy(&cpu_string[i], cpu_info, sizeof(cpu_info));
i += sizeof(cpu_info);
}
cpu_string[i] = '\0';
cpu_brand_ = cpu_string;
}
static constexpr int kParameterContainingNonStopTimeStampCounter = 0x80000007;
if (max_parameter >= kParameterContainingNonStopTimeStampCounter) {
__cpuid(cpu_info, kParameterContainingNonStopTimeStampCounter);
has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
}
if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) {
int cpu_info_hv[4] = {};
__cpuid(cpu_info_hv, 0x40000000);
if (cpu_info_hv[1] == 0x7263694D && // Micr
cpu_info_hv[2] == 0x666F736F && // osof
cpu_info_hv[3] == 0x76482074) { // t Hv
// If CPUID says we have a variant TSC and a hypervisor has identified
// itself and the hypervisor says it is Microsoft Hyper-V, then treat
// TSC as invariant.
//
// Microsoft Hyper-V hypervisor reports variant TSC as there are some
// scenarios (eg. VM live migration) where the TSC is variant, but for
// our purposes we can treat it as invariant.
has_non_stop_time_stamp_counter_ = true;
}
}
#elif defined(ARCH_CPU_ARM_FAMILY)
#if (defined(OS_ANDROID) || defined(OS_LINUX))
cpu_brand_ = *CpuInfoBrand();
#elif defined(OS_WIN)
// Windows makes high-resolution thread timing information available in
// user-space.
has_non_stop_time_stamp_counter_ = true;
#endif
#endif
}
CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
if (has_avx2()) return AVX2;
if (has_avx()) return AVX;
if (has_sse42()) return SSE42;
if (has_sse41()) return SSE41;
if (has_ssse3()) return SSSE3;
if (has_sse3()) return SSE3;
if (has_sse2()) return SSE2;
if (has_sse()) return SSE;
return PENTIUM;
}
} // namespace base