2020-08-14 16:58:22 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license
|
|
|
|
* that can be found in the LICENSE file in the root of the source
|
|
|
|
* tree. An additional intellectual property rights grant can be found
|
|
|
|
* in the file PATENTS. All contributing project authors may
|
|
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
|
|
*/
|
|
|
|
|
2020-12-23 07:48:30 +00:00
|
|
|
#ifndef API_NUMERICS_RUNNING_STATISTICS_H_
|
|
|
|
#define API_NUMERICS_RUNNING_STATISTICS_H_
|
2020-08-14 16:58:22 +00:00
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <cmath>
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
#include "absl/types/optional.h"
|
|
|
|
#include "rtc_base/checks.h"
|
|
|
|
#include "rtc_base/numerics/math_utils.h"
|
|
|
|
|
|
|
|
namespace webrtc {
|
2020-12-23 07:48:30 +00:00
|
|
|
namespace webrtc_impl {
|
2020-08-14 16:58:22 +00:00
|
|
|
|
|
|
|
// tl;dr: Robust and efficient online computation of statistics,
|
|
|
|
// using Welford's method for variance. [1]
|
|
|
|
//
|
|
|
|
// This should be your go-to class if you ever need to compute
|
|
|
|
// min, max, mean, variance and standard deviation.
|
|
|
|
// If you need to get percentiles, please use webrtc::SamplesStatsCounter.
|
|
|
|
//
|
|
|
|
// Please note RemoveSample() won't affect min and max.
|
|
|
|
// If you want a full-fledged moving window over N last samples,
|
|
|
|
// please use webrtc::RollingAccumulator.
|
|
|
|
//
|
|
|
|
// The measures return absl::nullopt if no samples were fed (Size() == 0),
|
|
|
|
// otherwise the returned optional is guaranteed to contain a value.
|
|
|
|
//
|
|
|
|
// [1]
|
|
|
|
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
|
|
|
|
|
|
|
|
// The type T is a scalar which must be convertible to double.
|
|
|
|
// Rationale: we often need greater precision for measures
|
|
|
|
// than for the samples themselves.
|
|
|
|
template <typename T>
|
|
|
|
class RunningStatistics {
|
|
|
|
public:
|
|
|
|
// Update stats ////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Add a value participating in the statistics in O(1) time.
|
|
|
|
void AddSample(T sample) {
|
|
|
|
max_ = std::max(max_, sample);
|
|
|
|
min_ = std::min(min_, sample);
|
|
|
|
++size_;
|
|
|
|
// Welford's incremental update.
|
|
|
|
const double delta = sample - mean_;
|
|
|
|
mean_ += delta / size_;
|
|
|
|
const double delta2 = sample - mean_;
|
|
|
|
cumul_ += delta * delta2;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove a previously added value in O(1) time.
|
|
|
|
// Nb: This doesn't affect min or max.
|
|
|
|
// Calling RemoveSample when Size()==0 is incorrect.
|
|
|
|
void RemoveSample(T sample) {
|
|
|
|
RTC_DCHECK_GT(Size(), 0);
|
|
|
|
// In production, just saturate at 0.
|
|
|
|
if (Size() == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Since samples order doesn't matter, this is the
|
|
|
|
// exact reciprocal of Welford's incremental update.
|
|
|
|
--size_;
|
|
|
|
const double delta = sample - mean_;
|
|
|
|
mean_ -= delta / size_;
|
|
|
|
const double delta2 = sample - mean_;
|
|
|
|
cumul_ -= delta * delta2;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Merge other stats, as if samples were added one by one, but in O(1).
|
|
|
|
void MergeStatistics(const RunningStatistics<T>& other) {
|
|
|
|
if (other.size_ == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
max_ = std::max(max_, other.max_);
|
|
|
|
min_ = std::min(min_, other.min_);
|
|
|
|
const int64_t new_size = size_ + other.size_;
|
|
|
|
const double new_mean =
|
|
|
|
(mean_ * size_ + other.mean_ * other.size_) / new_size;
|
|
|
|
// Each cumulant must be corrected.
|
|
|
|
// * from: sum((x_i - mean_)²)
|
|
|
|
// * to: sum((x_i - new_mean)²)
|
|
|
|
auto delta = [new_mean](const RunningStatistics<T>& stats) {
|
|
|
|
return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) +
|
|
|
|
stats.mean_ * stats.mean_);
|
|
|
|
};
|
|
|
|
cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other);
|
|
|
|
mean_ = new_mean;
|
|
|
|
size_ = new_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get Measures ////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Returns number of samples involved via AddSample() or MergeStatistics(),
|
|
|
|
// minus number of times RemoveSample() was called.
|
|
|
|
int64_t Size() const { return size_; }
|
|
|
|
|
|
|
|
// Returns minimum among all seen samples, in O(1) time.
|
|
|
|
// This isn't affected by RemoveSample().
|
|
|
|
absl::optional<T> GetMin() const {
|
|
|
|
if (size_ == 0) {
|
|
|
|
return absl::nullopt;
|
|
|
|
}
|
|
|
|
return min_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns maximum among all seen samples, in O(1) time.
|
|
|
|
// This isn't affected by RemoveSample().
|
|
|
|
absl::optional<T> GetMax() const {
|
|
|
|
if (size_ == 0) {
|
|
|
|
return absl::nullopt;
|
|
|
|
}
|
|
|
|
return max_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns mean in O(1) time.
|
|
|
|
absl::optional<double> GetMean() const {
|
|
|
|
if (size_ == 0) {
|
|
|
|
return absl::nullopt;
|
|
|
|
}
|
|
|
|
return mean_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns unbiased sample variance in O(1) time.
|
|
|
|
absl::optional<double> GetVariance() const {
|
|
|
|
if (size_ == 0) {
|
|
|
|
return absl::nullopt;
|
|
|
|
}
|
|
|
|
return cumul_ / size_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns unbiased standard deviation in O(1) time.
|
|
|
|
absl::optional<double> GetStandardDeviation() const {
|
|
|
|
if (size_ == 0) {
|
|
|
|
return absl::nullopt;
|
|
|
|
}
|
|
|
|
return std::sqrt(*GetVariance());
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
int64_t size_ = 0; // Samples seen.
|
|
|
|
T min_ = infinity_or_max<T>();
|
|
|
|
T max_ = minus_infinity_or_min<T>();
|
|
|
|
double mean_ = 0;
|
|
|
|
double cumul_ = 0; // Variance * size_, sometimes noted m2.
|
|
|
|
};
|
|
|
|
|
2020-12-23 07:48:30 +00:00
|
|
|
} // namespace webrtc_impl
|
2020-08-14 16:58:22 +00:00
|
|
|
} // namespace webrtc
|
|
|
|
|
2020-12-23 07:48:30 +00:00
|
|
|
#endif // API_NUMERICS_RUNNING_STATISTICS_H_
|