1210 lines
38 KiB
C++
1210 lines
38 KiB
C++
|
/*
|
||
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include "rtc_base/virtual_socket_server.h"
|
||
|
|
||
|
#include <errno.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
#include <map>
|
||
|
#include <memory>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "absl/algorithm/container.h"
|
||
|
#include "rtc_base/checks.h"
|
||
|
#include "rtc_base/deprecated/recursive_critical_section.h"
|
||
|
#include "rtc_base/fake_clock.h"
|
||
|
#include "rtc_base/logging.h"
|
||
|
#include "rtc_base/physical_socket_server.h"
|
||
|
#include "rtc_base/socket_address_pair.h"
|
||
|
#include "rtc_base/thread.h"
|
||
|
#include "rtc_base/time_utils.h"
|
||
|
|
||
|
namespace rtc {
|
||
|
#if defined(WEBRTC_WIN)
|
||
|
const in_addr kInitialNextIPv4 = {{{0x01, 0, 0, 0}}};
|
||
|
#else
|
||
|
// This value is entirely arbitrary, hence the lack of concern about endianness.
|
||
|
const in_addr kInitialNextIPv4 = {0x01000000};
|
||
|
#endif
|
||
|
// Starts at ::2 so as to not cause confusion with ::1.
|
||
|
const in6_addr kInitialNextIPv6 = {
|
||
|
{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}}};
|
||
|
|
||
|
const uint16_t kFirstEphemeralPort = 49152;
|
||
|
const uint16_t kLastEphemeralPort = 65535;
|
||
|
const uint16_t kEphemeralPortCount =
|
||
|
kLastEphemeralPort - kFirstEphemeralPort + 1;
|
||
|
const uint32_t kDefaultNetworkCapacity = 64 * 1024;
|
||
|
const uint32_t kDefaultTcpBufferSize = 32 * 1024;
|
||
|
|
||
|
const uint32_t UDP_HEADER_SIZE = 28; // IP + UDP headers
|
||
|
const uint32_t TCP_HEADER_SIZE = 40; // IP + TCP headers
|
||
|
const uint32_t TCP_MSS = 1400; // Maximum segment size
|
||
|
|
||
|
// Note: The current algorithm doesn't work for sample sizes smaller than this.
|
||
|
const int NUM_SAMPLES = 1000;
|
||
|
|
||
|
enum {
|
||
|
MSG_ID_PACKET,
|
||
|
MSG_ID_ADDRESS_BOUND,
|
||
|
MSG_ID_CONNECT,
|
||
|
MSG_ID_DISCONNECT,
|
||
|
MSG_ID_SIGNALREADEVENT,
|
||
|
};
|
||
|
|
||
|
// Packets are passed between sockets as messages. We copy the data just like
|
||
|
// the kernel does.
|
||
|
class Packet : public MessageData {
|
||
|
public:
|
||
|
Packet(const char* data, size_t size, const SocketAddress& from)
|
||
|
: size_(size), consumed_(0), from_(from) {
|
||
|
RTC_DCHECK(nullptr != data);
|
||
|
data_ = new char[size_];
|
||
|
memcpy(data_, data, size_);
|
||
|
}
|
||
|
|
||
|
~Packet() override { delete[] data_; }
|
||
|
|
||
|
const char* data() const { return data_ + consumed_; }
|
||
|
size_t size() const { return size_ - consumed_; }
|
||
|
const SocketAddress& from() const { return from_; }
|
||
|
|
||
|
// Remove the first size bytes from the data.
|
||
|
void Consume(size_t size) {
|
||
|
RTC_DCHECK(size + consumed_ < size_);
|
||
|
consumed_ += size;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
char* data_;
|
||
|
size_t size_, consumed_;
|
||
|
SocketAddress from_;
|
||
|
};
|
||
|
|
||
|
struct MessageAddress : public MessageData {
|
||
|
explicit MessageAddress(const SocketAddress& a) : addr(a) {}
|
||
|
SocketAddress addr;
|
||
|
};
|
||
|
|
||
|
VirtualSocket::VirtualSocket(VirtualSocketServer* server,
|
||
|
int family,
|
||
|
int type,
|
||
|
bool async)
|
||
|
: server_(server),
|
||
|
type_(type),
|
||
|
async_(async),
|
||
|
state_(CS_CLOSED),
|
||
|
error_(0),
|
||
|
listen_queue_(nullptr),
|
||
|
network_size_(0),
|
||
|
recv_buffer_size_(0),
|
||
|
bound_(false),
|
||
|
was_any_(false) {
|
||
|
RTC_DCHECK((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM));
|
||
|
RTC_DCHECK(async_ ||
|
||
|
(type_ != SOCK_STREAM)); // We only support async streams
|
||
|
server->SignalReadyToSend.connect(this,
|
||
|
&VirtualSocket::OnSocketServerReadyToSend);
|
||
|
}
|
||
|
|
||
|
VirtualSocket::~VirtualSocket() {
|
||
|
Close();
|
||
|
|
||
|
for (RecvBuffer::iterator it = recv_buffer_.begin(); it != recv_buffer_.end();
|
||
|
++it) {
|
||
|
delete *it;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
SocketAddress VirtualSocket::GetLocalAddress() const {
|
||
|
return local_addr_;
|
||
|
}
|
||
|
|
||
|
SocketAddress VirtualSocket::GetRemoteAddress() const {
|
||
|
return remote_addr_;
|
||
|
}
|
||
|
|
||
|
void VirtualSocket::SetLocalAddress(const SocketAddress& addr) {
|
||
|
local_addr_ = addr;
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::Bind(const SocketAddress& addr) {
|
||
|
if (!local_addr_.IsNil()) {
|
||
|
error_ = EINVAL;
|
||
|
return -1;
|
||
|
}
|
||
|
local_addr_ = addr;
|
||
|
int result = server_->Bind(this, &local_addr_);
|
||
|
if (result != 0) {
|
||
|
local_addr_.Clear();
|
||
|
error_ = EADDRINUSE;
|
||
|
} else {
|
||
|
bound_ = true;
|
||
|
was_any_ = addr.IsAnyIP();
|
||
|
// Post a message here such that test case could have chance to
|
||
|
// process the local address. (i.e. SetAlternativeLocalAddress).
|
||
|
server_->msg_queue_->Post(RTC_FROM_HERE, this, MSG_ID_ADDRESS_BOUND);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::Connect(const SocketAddress& addr) {
|
||
|
return InitiateConnect(addr, true);
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::Close() {
|
||
|
if (!local_addr_.IsNil() && bound_) {
|
||
|
// Remove from the binding table.
|
||
|
server_->Unbind(local_addr_, this);
|
||
|
bound_ = false;
|
||
|
}
|
||
|
|
||
|
if (SOCK_STREAM == type_) {
|
||
|
// Cancel pending sockets
|
||
|
if (listen_queue_) {
|
||
|
while (!listen_queue_->empty()) {
|
||
|
SocketAddress addr = listen_queue_->front();
|
||
|
|
||
|
// Disconnect listening socket.
|
||
|
server_->Disconnect(server_->LookupBinding(addr));
|
||
|
listen_queue_->pop_front();
|
||
|
}
|
||
|
delete listen_queue_;
|
||
|
listen_queue_ = nullptr;
|
||
|
}
|
||
|
// Disconnect stream sockets
|
||
|
if (CS_CONNECTED == state_) {
|
||
|
// Disconnect remote socket, check if it is a child of a server socket.
|
||
|
VirtualSocket* socket =
|
||
|
server_->LookupConnection(local_addr_, remote_addr_);
|
||
|
if (!socket) {
|
||
|
// Not a server socket child, then see if it is bound.
|
||
|
// TODO(tbd): If this is indeed a server socket that has no
|
||
|
// children this will cause the server socket to be
|
||
|
// closed. This might lead to unexpected results, how to fix this?
|
||
|
socket = server_->LookupBinding(remote_addr_);
|
||
|
}
|
||
|
server_->Disconnect(socket);
|
||
|
|
||
|
// Remove mapping for both directions.
|
||
|
server_->RemoveConnection(remote_addr_, local_addr_);
|
||
|
server_->RemoveConnection(local_addr_, remote_addr_);
|
||
|
}
|
||
|
// Cancel potential connects
|
||
|
MessageList msgs;
|
||
|
if (server_->msg_queue_) {
|
||
|
server_->msg_queue_->Clear(this, MSG_ID_CONNECT, &msgs);
|
||
|
}
|
||
|
for (MessageList::iterator it = msgs.begin(); it != msgs.end(); ++it) {
|
||
|
RTC_DCHECK(nullptr != it->pdata);
|
||
|
MessageAddress* data = static_cast<MessageAddress*>(it->pdata);
|
||
|
|
||
|
// Lookup remote side.
|
||
|
VirtualSocket* socket =
|
||
|
server_->LookupConnection(local_addr_, data->addr);
|
||
|
if (socket) {
|
||
|
// Server socket, remote side is a socket retreived by
|
||
|
// accept. Accepted sockets are not bound so we will not
|
||
|
// find it by looking in the bindings table.
|
||
|
server_->Disconnect(socket);
|
||
|
server_->RemoveConnection(local_addr_, data->addr);
|
||
|
} else {
|
||
|
server_->Disconnect(server_->LookupBinding(data->addr));
|
||
|
}
|
||
|
delete data;
|
||
|
}
|
||
|
// Clear incoming packets and disconnect messages
|
||
|
if (server_->msg_queue_) {
|
||
|
server_->msg_queue_->Clear(this);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
state_ = CS_CLOSED;
|
||
|
local_addr_.Clear();
|
||
|
remote_addr_.Clear();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::Send(const void* pv, size_t cb) {
|
||
|
if (CS_CONNECTED != state_) {
|
||
|
error_ = ENOTCONN;
|
||
|
return -1;
|
||
|
}
|
||
|
if (SOCK_DGRAM == type_) {
|
||
|
return SendUdp(pv, cb, remote_addr_);
|
||
|
} else {
|
||
|
return SendTcp(pv, cb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::SendTo(const void* pv,
|
||
|
size_t cb,
|
||
|
const SocketAddress& addr) {
|
||
|
if (SOCK_DGRAM == type_) {
|
||
|
return SendUdp(pv, cb, addr);
|
||
|
} else {
|
||
|
if (CS_CONNECTED != state_) {
|
||
|
error_ = ENOTCONN;
|
||
|
return -1;
|
||
|
}
|
||
|
return SendTcp(pv, cb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::Recv(void* pv, size_t cb, int64_t* timestamp) {
|
||
|
SocketAddress addr;
|
||
|
return RecvFrom(pv, cb, &addr, timestamp);
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::RecvFrom(void* pv,
|
||
|
size_t cb,
|
||
|
SocketAddress* paddr,
|
||
|
int64_t* timestamp) {
|
||
|
if (timestamp) {
|
||
|
*timestamp = -1;
|
||
|
}
|
||
|
// If we don't have a packet, then either error or wait for one to arrive.
|
||
|
if (recv_buffer_.empty()) {
|
||
|
if (async_) {
|
||
|
error_ = EAGAIN;
|
||
|
return -1;
|
||
|
}
|
||
|
while (recv_buffer_.empty()) {
|
||
|
Message msg;
|
||
|
server_->msg_queue_->Get(&msg);
|
||
|
server_->msg_queue_->Dispatch(&msg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the packet at the front of the queue.
|
||
|
Packet* packet = recv_buffer_.front();
|
||
|
size_t data_read = std::min(cb, packet->size());
|
||
|
memcpy(pv, packet->data(), data_read);
|
||
|
*paddr = packet->from();
|
||
|
|
||
|
if (data_read < packet->size()) {
|
||
|
packet->Consume(data_read);
|
||
|
} else {
|
||
|
recv_buffer_.pop_front();
|
||
|
delete packet;
|
||
|
}
|
||
|
|
||
|
// To behave like a real socket, SignalReadEvent should fire in the next
|
||
|
// message loop pass if there's still data buffered.
|
||
|
if (!recv_buffer_.empty()) {
|
||
|
// Clear the message so it doesn't end up posted multiple times.
|
||
|
server_->msg_queue_->Clear(this, MSG_ID_SIGNALREADEVENT);
|
||
|
server_->msg_queue_->Post(RTC_FROM_HERE, this, MSG_ID_SIGNALREADEVENT);
|
||
|
}
|
||
|
|
||
|
if (SOCK_STREAM == type_) {
|
||
|
bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity_);
|
||
|
recv_buffer_size_ -= data_read;
|
||
|
if (was_full) {
|
||
|
VirtualSocket* sender = server_->LookupBinding(remote_addr_);
|
||
|
RTC_DCHECK(nullptr != sender);
|
||
|
server_->SendTcp(sender);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return static_cast<int>(data_read);
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::Listen(int backlog) {
|
||
|
RTC_DCHECK(SOCK_STREAM == type_);
|
||
|
RTC_DCHECK(CS_CLOSED == state_);
|
||
|
if (local_addr_.IsNil()) {
|
||
|
error_ = EINVAL;
|
||
|
return -1;
|
||
|
}
|
||
|
RTC_DCHECK(nullptr == listen_queue_);
|
||
|
listen_queue_ = new ListenQueue;
|
||
|
state_ = CS_CONNECTING;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
VirtualSocket* VirtualSocket::Accept(SocketAddress* paddr) {
|
||
|
if (nullptr == listen_queue_) {
|
||
|
error_ = EINVAL;
|
||
|
return nullptr;
|
||
|
}
|
||
|
while (!listen_queue_->empty()) {
|
||
|
VirtualSocket* socket = new VirtualSocket(server_, AF_INET, type_, async_);
|
||
|
|
||
|
// Set the new local address to the same as this server socket.
|
||
|
socket->SetLocalAddress(local_addr_);
|
||
|
// Sockets made from a socket that 'was Any' need to inherit that.
|
||
|
socket->set_was_any(was_any_);
|
||
|
SocketAddress remote_addr(listen_queue_->front());
|
||
|
int result = socket->InitiateConnect(remote_addr, false);
|
||
|
listen_queue_->pop_front();
|
||
|
if (result != 0) {
|
||
|
delete socket;
|
||
|
continue;
|
||
|
}
|
||
|
socket->CompleteConnect(remote_addr, false);
|
||
|
if (paddr) {
|
||
|
*paddr = remote_addr;
|
||
|
}
|
||
|
return socket;
|
||
|
}
|
||
|
error_ = EWOULDBLOCK;
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::GetError() const {
|
||
|
return error_;
|
||
|
}
|
||
|
|
||
|
void VirtualSocket::SetError(int error) {
|
||
|
error_ = error;
|
||
|
}
|
||
|
|
||
|
Socket::ConnState VirtualSocket::GetState() const {
|
||
|
return state_;
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::GetOption(Option opt, int* value) {
|
||
|
OptionsMap::const_iterator it = options_map_.find(opt);
|
||
|
if (it == options_map_.end()) {
|
||
|
return -1;
|
||
|
}
|
||
|
*value = it->second;
|
||
|
return 0; // 0 is success to emulate getsockopt()
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::SetOption(Option opt, int value) {
|
||
|
options_map_[opt] = value;
|
||
|
return 0; // 0 is success to emulate setsockopt()
|
||
|
}
|
||
|
|
||
|
void VirtualSocket::OnMessage(Message* pmsg) {
|
||
|
if (pmsg->message_id == MSG_ID_PACKET) {
|
||
|
RTC_DCHECK(nullptr != pmsg->pdata);
|
||
|
Packet* packet = static_cast<Packet*>(pmsg->pdata);
|
||
|
|
||
|
recv_buffer_.push_back(packet);
|
||
|
|
||
|
if (async_) {
|
||
|
SignalReadEvent(this);
|
||
|
}
|
||
|
} else if (pmsg->message_id == MSG_ID_CONNECT) {
|
||
|
RTC_DCHECK(nullptr != pmsg->pdata);
|
||
|
MessageAddress* data = static_cast<MessageAddress*>(pmsg->pdata);
|
||
|
if (listen_queue_ != nullptr) {
|
||
|
listen_queue_->push_back(data->addr);
|
||
|
if (async_) {
|
||
|
SignalReadEvent(this);
|
||
|
}
|
||
|
} else if ((SOCK_STREAM == type_) && (CS_CONNECTING == state_)) {
|
||
|
CompleteConnect(data->addr, true);
|
||
|
} else {
|
||
|
RTC_LOG(LS_VERBOSE) << "Socket at " << local_addr_.ToString()
|
||
|
<< " is not listening";
|
||
|
server_->Disconnect(server_->LookupBinding(data->addr));
|
||
|
}
|
||
|
delete data;
|
||
|
} else if (pmsg->message_id == MSG_ID_DISCONNECT) {
|
||
|
RTC_DCHECK(SOCK_STREAM == type_);
|
||
|
if (CS_CLOSED != state_) {
|
||
|
int error = (CS_CONNECTING == state_) ? ECONNREFUSED : 0;
|
||
|
state_ = CS_CLOSED;
|
||
|
remote_addr_.Clear();
|
||
|
if (async_) {
|
||
|
SignalCloseEvent(this, error);
|
||
|
}
|
||
|
}
|
||
|
} else if (pmsg->message_id == MSG_ID_ADDRESS_BOUND) {
|
||
|
SignalAddressReady(this, GetLocalAddress());
|
||
|
} else if (pmsg->message_id == MSG_ID_SIGNALREADEVENT) {
|
||
|
if (!recv_buffer_.empty()) {
|
||
|
SignalReadEvent(this);
|
||
|
}
|
||
|
} else {
|
||
|
RTC_NOTREACHED();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::InitiateConnect(const SocketAddress& addr, bool use_delay) {
|
||
|
if (!remote_addr_.IsNil()) {
|
||
|
error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS;
|
||
|
return -1;
|
||
|
}
|
||
|
if (local_addr_.IsNil()) {
|
||
|
// If there's no local address set, grab a random one in the correct AF.
|
||
|
int result = 0;
|
||
|
if (addr.ipaddr().family() == AF_INET) {
|
||
|
result = Bind(SocketAddress("0.0.0.0", 0));
|
||
|
} else if (addr.ipaddr().family() == AF_INET6) {
|
||
|
result = Bind(SocketAddress("::", 0));
|
||
|
}
|
||
|
if (result != 0) {
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
if (type_ == SOCK_DGRAM) {
|
||
|
remote_addr_ = addr;
|
||
|
state_ = CS_CONNECTED;
|
||
|
} else {
|
||
|
int result = server_->Connect(this, addr, use_delay);
|
||
|
if (result != 0) {
|
||
|
error_ = EHOSTUNREACH;
|
||
|
return -1;
|
||
|
}
|
||
|
state_ = CS_CONNECTING;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void VirtualSocket::CompleteConnect(const SocketAddress& addr, bool notify) {
|
||
|
RTC_DCHECK(CS_CONNECTING == state_);
|
||
|
remote_addr_ = addr;
|
||
|
state_ = CS_CONNECTED;
|
||
|
server_->AddConnection(remote_addr_, local_addr_, this);
|
||
|
if (async_ && notify) {
|
||
|
SignalConnectEvent(this);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::SendUdp(const void* pv,
|
||
|
size_t cb,
|
||
|
const SocketAddress& addr) {
|
||
|
// If we have not been assigned a local port, then get one.
|
||
|
if (local_addr_.IsNil()) {
|
||
|
local_addr_ = EmptySocketAddressWithFamily(addr.ipaddr().family());
|
||
|
int result = server_->Bind(this, &local_addr_);
|
||
|
if (result != 0) {
|
||
|
local_addr_.Clear();
|
||
|
error_ = EADDRINUSE;
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Send the data in a message to the appropriate socket.
|
||
|
return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr);
|
||
|
}
|
||
|
|
||
|
int VirtualSocket::SendTcp(const void* pv, size_t cb) {
|
||
|
size_t capacity = server_->send_buffer_capacity_ - send_buffer_.size();
|
||
|
if (0 == capacity) {
|
||
|
ready_to_send_ = false;
|
||
|
error_ = EWOULDBLOCK;
|
||
|
return -1;
|
||
|
}
|
||
|
size_t consumed = std::min(cb, capacity);
|
||
|
const char* cpv = static_cast<const char*>(pv);
|
||
|
send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed);
|
||
|
server_->SendTcp(this);
|
||
|
return static_cast<int>(consumed);
|
||
|
}
|
||
|
|
||
|
void VirtualSocket::OnSocketServerReadyToSend() {
|
||
|
if (ready_to_send_) {
|
||
|
// This socket didn't encounter EWOULDBLOCK, so there's nothing to do.
|
||
|
return;
|
||
|
}
|
||
|
if (type_ == SOCK_DGRAM) {
|
||
|
ready_to_send_ = true;
|
||
|
SignalWriteEvent(this);
|
||
|
} else {
|
||
|
RTC_DCHECK(type_ == SOCK_STREAM);
|
||
|
// This will attempt to empty the full send buffer, and will fire
|
||
|
// SignalWriteEvent if successful.
|
||
|
server_->SendTcp(this);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
VirtualSocketServer::VirtualSocketServer() : VirtualSocketServer(nullptr) {}
|
||
|
|
||
|
VirtualSocketServer::VirtualSocketServer(ThreadProcessingFakeClock* fake_clock)
|
||
|
: fake_clock_(fake_clock),
|
||
|
msg_queue_(nullptr),
|
||
|
stop_on_idle_(false),
|
||
|
next_ipv4_(kInitialNextIPv4),
|
||
|
next_ipv6_(kInitialNextIPv6),
|
||
|
next_port_(kFirstEphemeralPort),
|
||
|
bindings_(new AddressMap()),
|
||
|
connections_(new ConnectionMap()),
|
||
|
bandwidth_(0),
|
||
|
network_capacity_(kDefaultNetworkCapacity),
|
||
|
send_buffer_capacity_(kDefaultTcpBufferSize),
|
||
|
recv_buffer_capacity_(kDefaultTcpBufferSize),
|
||
|
delay_mean_(0),
|
||
|
delay_stddev_(0),
|
||
|
delay_samples_(NUM_SAMPLES),
|
||
|
drop_prob_(0.0) {
|
||
|
UpdateDelayDistribution();
|
||
|
}
|
||
|
|
||
|
VirtualSocketServer::~VirtualSocketServer() {
|
||
|
delete bindings_;
|
||
|
delete connections_;
|
||
|
}
|
||
|
|
||
|
IPAddress VirtualSocketServer::GetNextIP(int family) {
|
||
|
if (family == AF_INET) {
|
||
|
IPAddress next_ip(next_ipv4_);
|
||
|
next_ipv4_.s_addr = HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1);
|
||
|
return next_ip;
|
||
|
} else if (family == AF_INET6) {
|
||
|
IPAddress next_ip(next_ipv6_);
|
||
|
uint32_t* as_ints = reinterpret_cast<uint32_t*>(&next_ipv6_.s6_addr);
|
||
|
as_ints[3] += 1;
|
||
|
return next_ip;
|
||
|
}
|
||
|
return IPAddress();
|
||
|
}
|
||
|
|
||
|
uint16_t VirtualSocketServer::GetNextPort() {
|
||
|
uint16_t port = next_port_;
|
||
|
if (next_port_ < kLastEphemeralPort) {
|
||
|
++next_port_;
|
||
|
} else {
|
||
|
next_port_ = kFirstEphemeralPort;
|
||
|
}
|
||
|
return port;
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::SetSendingBlocked(bool blocked) {
|
||
|
if (blocked == sending_blocked_) {
|
||
|
// Unchanged; nothing to do.
|
||
|
return;
|
||
|
}
|
||
|
sending_blocked_ = blocked;
|
||
|
if (!sending_blocked_) {
|
||
|
// Sending was blocked, but is now unblocked. This signal gives sockets a
|
||
|
// chance to fire SignalWriteEvent, and for TCP, send buffered data.
|
||
|
SignalReadyToSend();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Socket* VirtualSocketServer::CreateSocket(int family, int type) {
|
||
|
return CreateSocketInternal(family, type);
|
||
|
}
|
||
|
|
||
|
AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int family, int type) {
|
||
|
return CreateSocketInternal(family, type);
|
||
|
}
|
||
|
|
||
|
VirtualSocket* VirtualSocketServer::CreateSocketInternal(int family, int type) {
|
||
|
VirtualSocket* socket = new VirtualSocket(this, family, type, true);
|
||
|
SignalSocketCreated(socket);
|
||
|
return socket;
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::SetMessageQueue(Thread* msg_queue) {
|
||
|
msg_queue_ = msg_queue;
|
||
|
if (msg_queue_) {
|
||
|
msg_queue_->SignalQueueDestroyed.connect(
|
||
|
this, &VirtualSocketServer::OnMessageQueueDestroyed);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool VirtualSocketServer::Wait(int cmsWait, bool process_io) {
|
||
|
RTC_DCHECK(msg_queue_ == Thread::Current());
|
||
|
if (stop_on_idle_ && Thread::Current()->empty()) {
|
||
|
return false;
|
||
|
}
|
||
|
// Note: we don't need to do anything with |process_io| since we don't have
|
||
|
// any real I/O. Received packets come in the form of queued messages, so
|
||
|
// Thread will ensure WakeUp is called if another thread sends a
|
||
|
// packet.
|
||
|
wakeup_.Wait(cmsWait);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::WakeUp() {
|
||
|
wakeup_.Set();
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::SetAlternativeLocalAddress(
|
||
|
const rtc::IPAddress& address,
|
||
|
const rtc::IPAddress& alternative) {
|
||
|
alternative_address_mapping_[address] = alternative;
|
||
|
}
|
||
|
|
||
|
bool VirtualSocketServer::ProcessMessagesUntilIdle() {
|
||
|
RTC_DCHECK(msg_queue_ == Thread::Current());
|
||
|
stop_on_idle_ = true;
|
||
|
while (!msg_queue_->empty()) {
|
||
|
if (fake_clock_) {
|
||
|
// If using a fake clock, advance it in millisecond increments until the
|
||
|
// queue is empty.
|
||
|
fake_clock_->AdvanceTime(webrtc::TimeDelta::Millis(1));
|
||
|
} else {
|
||
|
// Otherwise, run a normal message loop.
|
||
|
Message msg;
|
||
|
if (msg_queue_->Get(&msg, Thread::kForever)) {
|
||
|
msg_queue_->Dispatch(&msg);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
stop_on_idle_ = false;
|
||
|
return !msg_queue_->IsQuitting();
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::SetNextPortForTesting(uint16_t port) {
|
||
|
next_port_ = port;
|
||
|
}
|
||
|
|
||
|
bool VirtualSocketServer::CloseTcpConnections(
|
||
|
const SocketAddress& addr_local,
|
||
|
const SocketAddress& addr_remote) {
|
||
|
VirtualSocket* socket = LookupConnection(addr_local, addr_remote);
|
||
|
if (!socket) {
|
||
|
return false;
|
||
|
}
|
||
|
// Signal the close event on the local connection first.
|
||
|
socket->SignalCloseEvent(socket, 0);
|
||
|
|
||
|
// Trigger the remote connection's close event.
|
||
|
socket->Close();
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int VirtualSocketServer::Bind(VirtualSocket* socket,
|
||
|
const SocketAddress& addr) {
|
||
|
RTC_DCHECK(nullptr != socket);
|
||
|
// Address must be completely specified at this point
|
||
|
RTC_DCHECK(!IPIsUnspec(addr.ipaddr()));
|
||
|
RTC_DCHECK(addr.port() != 0);
|
||
|
|
||
|
// Normalize the address (turns v6-mapped addresses into v4-addresses).
|
||
|
SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
|
||
|
|
||
|
AddressMap::value_type entry(normalized, socket);
|
||
|
return bindings_->insert(entry).second ? 0 : -1;
|
||
|
}
|
||
|
|
||
|
int VirtualSocketServer::Bind(VirtualSocket* socket, SocketAddress* addr) {
|
||
|
RTC_DCHECK(nullptr != socket);
|
||
|
|
||
|
// Normalize the IP.
|
||
|
if (!IPIsUnspec(addr->ipaddr())) {
|
||
|
addr->SetIP(addr->ipaddr().Normalized());
|
||
|
} else {
|
||
|
RTC_NOTREACHED();
|
||
|
}
|
||
|
|
||
|
// If the IP appears in |alternative_address_mapping_|, meaning the test has
|
||
|
// configured sockets bound to this IP to actually use another IP, replace
|
||
|
// the IP here.
|
||
|
auto alternative = alternative_address_mapping_.find(addr->ipaddr());
|
||
|
if (alternative != alternative_address_mapping_.end()) {
|
||
|
addr->SetIP(alternative->second);
|
||
|
}
|
||
|
|
||
|
// Assign a port if not assigned.
|
||
|
if (addr->port() == 0) {
|
||
|
for (int i = 0; i < kEphemeralPortCount; ++i) {
|
||
|
addr->SetPort(GetNextPort());
|
||
|
if (bindings_->find(*addr) == bindings_->end()) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Bind(socket, *addr);
|
||
|
}
|
||
|
|
||
|
VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) {
|
||
|
SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
|
||
|
AddressMap::iterator it = bindings_->find(normalized);
|
||
|
if (it != bindings_->end()) {
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
IPAddress default_ip = GetDefaultRoute(addr.ipaddr().family());
|
||
|
if (!IPIsUnspec(default_ip) && addr.ipaddr() == default_ip) {
|
||
|
// If we can't find a binding for the packet which is sent to the interface
|
||
|
// corresponding to the default route, it should match a binding with the
|
||
|
// correct port to the any address.
|
||
|
SocketAddress sock_addr =
|
||
|
EmptySocketAddressWithFamily(addr.ipaddr().family());
|
||
|
sock_addr.SetPort(addr.port());
|
||
|
return LookupBinding(sock_addr);
|
||
|
}
|
||
|
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
int VirtualSocketServer::Unbind(const SocketAddress& addr,
|
||
|
VirtualSocket* socket) {
|
||
|
SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
|
||
|
RTC_DCHECK((*bindings_)[normalized] == socket);
|
||
|
bindings_->erase(bindings_->find(normalized));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::AddConnection(const SocketAddress& local,
|
||
|
const SocketAddress& remote,
|
||
|
VirtualSocket* remote_socket) {
|
||
|
// Add this socket pair to our routing table. This will allow
|
||
|
// multiple clients to connect to the same server address.
|
||
|
SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
|
||
|
SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
|
||
|
SocketAddressPair address_pair(local_normalized, remote_normalized);
|
||
|
connections_->insert(std::pair<SocketAddressPair, VirtualSocket*>(
|
||
|
address_pair, remote_socket));
|
||
|
}
|
||
|
|
||
|
VirtualSocket* VirtualSocketServer::LookupConnection(
|
||
|
const SocketAddress& local,
|
||
|
const SocketAddress& remote) {
|
||
|
SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
|
||
|
SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
|
||
|
SocketAddressPair address_pair(local_normalized, remote_normalized);
|
||
|
ConnectionMap::iterator it = connections_->find(address_pair);
|
||
|
return (connections_->end() != it) ? it->second : nullptr;
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::RemoveConnection(const SocketAddress& local,
|
||
|
const SocketAddress& remote) {
|
||
|
SocketAddress local_normalized(local.ipaddr().Normalized(), local.port());
|
||
|
SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port());
|
||
|
SocketAddressPair address_pair(local_normalized, remote_normalized);
|
||
|
connections_->erase(address_pair);
|
||
|
}
|
||
|
|
||
|
static double Random() {
|
||
|
return static_cast<double>(rand()) / RAND_MAX;
|
||
|
}
|
||
|
|
||
|
int VirtualSocketServer::Connect(VirtualSocket* socket,
|
||
|
const SocketAddress& remote_addr,
|
||
|
bool use_delay) {
|
||
|
uint32_t delay = use_delay ? GetTransitDelay(socket) : 0;
|
||
|
VirtualSocket* remote = LookupBinding(remote_addr);
|
||
|
if (!CanInteractWith(socket, remote)) {
|
||
|
RTC_LOG(LS_INFO) << "Address family mismatch between "
|
||
|
<< socket->GetLocalAddress().ToString() << " and "
|
||
|
<< remote_addr.ToString();
|
||
|
return -1;
|
||
|
}
|
||
|
if (remote != nullptr) {
|
||
|
SocketAddress addr = socket->GetLocalAddress();
|
||
|
msg_queue_->PostDelayed(RTC_FROM_HERE, delay, remote, MSG_ID_CONNECT,
|
||
|
new MessageAddress(addr));
|
||
|
} else {
|
||
|
RTC_LOG(LS_INFO) << "No one listening at " << remote_addr.ToString();
|
||
|
msg_queue_->PostDelayed(RTC_FROM_HERE, delay, socket, MSG_ID_DISCONNECT);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
bool VirtualSocketServer::Disconnect(VirtualSocket* socket) {
|
||
|
if (socket) {
|
||
|
// If we simulate packets being delayed, we should simulate the
|
||
|
// equivalent of a FIN being delayed as well.
|
||
|
uint32_t delay = GetTransitDelay(socket);
|
||
|
// Remove the mapping.
|
||
|
msg_queue_->PostDelayed(RTC_FROM_HERE, delay, socket, MSG_ID_DISCONNECT);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int VirtualSocketServer::SendUdp(VirtualSocket* socket,
|
||
|
const char* data,
|
||
|
size_t data_size,
|
||
|
const SocketAddress& remote_addr) {
|
||
|
++sent_packets_;
|
||
|
if (sending_blocked_) {
|
||
|
CritScope cs(&socket->crit_);
|
||
|
socket->ready_to_send_ = false;
|
||
|
socket->error_ = EWOULDBLOCK;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// See if we want to drop this packet.
|
||
|
if (Random() < drop_prob_) {
|
||
|
RTC_LOG(LS_VERBOSE) << "Dropping packet: bad luck";
|
||
|
return static_cast<int>(data_size);
|
||
|
}
|
||
|
|
||
|
VirtualSocket* recipient = LookupBinding(remote_addr);
|
||
|
if (!recipient) {
|
||
|
// Make a fake recipient for address family checking.
|
||
|
std::unique_ptr<VirtualSocket> dummy_socket(
|
||
|
CreateSocketInternal(AF_INET, SOCK_DGRAM));
|
||
|
dummy_socket->SetLocalAddress(remote_addr);
|
||
|
if (!CanInteractWith(socket, dummy_socket.get())) {
|
||
|
RTC_LOG(LS_VERBOSE) << "Incompatible address families: "
|
||
|
<< socket->GetLocalAddress().ToString() << " and "
|
||
|
<< remote_addr.ToString();
|
||
|
return -1;
|
||
|
}
|
||
|
RTC_LOG(LS_VERBOSE) << "No one listening at " << remote_addr.ToString();
|
||
|
return static_cast<int>(data_size);
|
||
|
}
|
||
|
|
||
|
if (!CanInteractWith(socket, recipient)) {
|
||
|
RTC_LOG(LS_VERBOSE) << "Incompatible address families: "
|
||
|
<< socket->GetLocalAddress().ToString() << " and "
|
||
|
<< remote_addr.ToString();
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
CritScope cs(&socket->crit_);
|
||
|
|
||
|
int64_t cur_time = TimeMillis();
|
||
|
PurgeNetworkPackets(socket, cur_time);
|
||
|
|
||
|
// Determine whether we have enough bandwidth to accept this packet. To do
|
||
|
// this, we need to update the send queue. Once we know it's current size,
|
||
|
// we know whether we can fit this packet.
|
||
|
//
|
||
|
// NOTE: There are better algorithms for maintaining such a queue (such as
|
||
|
// "Derivative Random Drop"); however, this algorithm is a more accurate
|
||
|
// simulation of what a normal network would do.
|
||
|
|
||
|
size_t packet_size = data_size + UDP_HEADER_SIZE;
|
||
|
if (socket->network_size_ + packet_size > network_capacity_) {
|
||
|
RTC_LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded";
|
||
|
return static_cast<int>(data_size);
|
||
|
}
|
||
|
|
||
|
AddPacketToNetwork(socket, recipient, cur_time, data, data_size,
|
||
|
UDP_HEADER_SIZE, false);
|
||
|
|
||
|
return static_cast<int>(data_size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::SendTcp(VirtualSocket* socket) {
|
||
|
++sent_packets_;
|
||
|
if (sending_blocked_) {
|
||
|
// Eventually the socket's buffer will fill and VirtualSocket::SendTcp will
|
||
|
// set EWOULDBLOCK.
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// TCP can't send more data than will fill up the receiver's buffer.
|
||
|
// We track the data that is in the buffer plus data in flight using the
|
||
|
// recipient's recv_buffer_size_. Anything beyond that must be stored in the
|
||
|
// sender's buffer. We will trigger the buffered data to be sent when data
|
||
|
// is read from the recv_buffer.
|
||
|
|
||
|
// Lookup the local/remote pair in the connections table.
|
||
|
VirtualSocket* recipient =
|
||
|
LookupConnection(socket->local_addr_, socket->remote_addr_);
|
||
|
if (!recipient) {
|
||
|
RTC_LOG(LS_VERBOSE) << "Sending data to no one.";
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
CritScope cs(&socket->crit_);
|
||
|
|
||
|
int64_t cur_time = TimeMillis();
|
||
|
PurgeNetworkPackets(socket, cur_time);
|
||
|
|
||
|
while (true) {
|
||
|
size_t available = recv_buffer_capacity_ - recipient->recv_buffer_size_;
|
||
|
size_t max_data_size =
|
||
|
std::min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE);
|
||
|
size_t data_size = std::min(socket->send_buffer_.size(), max_data_size);
|
||
|
if (0 == data_size)
|
||
|
break;
|
||
|
|
||
|
AddPacketToNetwork(socket, recipient, cur_time, &socket->send_buffer_[0],
|
||
|
data_size, TCP_HEADER_SIZE, true);
|
||
|
recipient->recv_buffer_size_ += data_size;
|
||
|
|
||
|
size_t new_buffer_size = socket->send_buffer_.size() - data_size;
|
||
|
// Avoid undefined access beyond the last element of the vector.
|
||
|
// This only happens when new_buffer_size is 0.
|
||
|
if (data_size < socket->send_buffer_.size()) {
|
||
|
// memmove is required for potentially overlapping source/destination.
|
||
|
memmove(&socket->send_buffer_[0], &socket->send_buffer_[data_size],
|
||
|
new_buffer_size);
|
||
|
}
|
||
|
socket->send_buffer_.resize(new_buffer_size);
|
||
|
}
|
||
|
|
||
|
if (!socket->ready_to_send_ &&
|
||
|
(socket->send_buffer_.size() < send_buffer_capacity_)) {
|
||
|
socket->ready_to_send_ = true;
|
||
|
socket->SignalWriteEvent(socket);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender,
|
||
|
VirtualSocket* recipient,
|
||
|
int64_t cur_time,
|
||
|
const char* data,
|
||
|
size_t data_size,
|
||
|
size_t header_size,
|
||
|
bool ordered) {
|
||
|
VirtualSocket::NetworkEntry entry;
|
||
|
entry.size = data_size + header_size;
|
||
|
|
||
|
sender->network_size_ += entry.size;
|
||
|
uint32_t send_delay = SendDelay(static_cast<uint32_t>(sender->network_size_));
|
||
|
entry.done_time = cur_time + send_delay;
|
||
|
sender->network_.push_back(entry);
|
||
|
|
||
|
// Find the delay for crossing the many virtual hops of the network.
|
||
|
uint32_t transit_delay = GetTransitDelay(sender);
|
||
|
|
||
|
// When the incoming packet is from a binding of the any address, translate it
|
||
|
// to the default route here such that the recipient will see the default
|
||
|
// route.
|
||
|
SocketAddress sender_addr = sender->local_addr_;
|
||
|
IPAddress default_ip = GetDefaultRoute(sender_addr.ipaddr().family());
|
||
|
if (sender_addr.IsAnyIP() && !IPIsUnspec(default_ip)) {
|
||
|
sender_addr.SetIP(default_ip);
|
||
|
}
|
||
|
|
||
|
// Post the packet as a message to be delivered (on our own thread)
|
||
|
Packet* p = new Packet(data, data_size, sender_addr);
|
||
|
|
||
|
int64_t ts = TimeAfter(send_delay + transit_delay);
|
||
|
if (ordered) {
|
||
|
// Ensure that new packets arrive after previous ones
|
||
|
ts = std::max(ts, sender->last_delivery_time_);
|
||
|
// A socket should not have both ordered and unordered delivery, so its last
|
||
|
// delivery time only needs to be updated when it has ordered delivery.
|
||
|
sender->last_delivery_time_ = ts;
|
||
|
}
|
||
|
msg_queue_->PostAt(RTC_FROM_HERE, ts, recipient, MSG_ID_PACKET, p);
|
||
|
}
|
||
|
|
||
|
void VirtualSocketServer::PurgeNetworkPackets(VirtualSocket* socket,
|
||
|
int64_t cur_time) {
|
||
|
while (!socket->network_.empty() &&
|
||
|
(socket->network_.front().done_time <= cur_time)) {
|
||
|
RTC_DCHECK(socket->network_size_ >= socket->network_.front().size);
|
||
|
socket->network_size_ -= socket->network_.front().size;
|
||
|
socket->network_.pop_front();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uint32_t VirtualSocketServer::SendDelay(uint32_t size) {
|
||
|
if (bandwidth_ == 0)
|
||
|
return 0;
|
||
|
else
|
||
|
return 1000 * size / bandwidth_;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
void PrintFunction(std::vector<std::pair<double, double> >* f) {
|
||
|
return;
|
||
|
double sum = 0;
|
||
|
for (uint32_t i = 0; i < f->size(); ++i) {
|
||
|
std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl;
|
||
|
sum += (*f)[i].second;
|
||
|
}
|
||
|
if (!f->empty()) {
|
||
|
const double mean = sum / f->size();
|
||
|
double sum_sq_dev = 0;
|
||
|
for (uint32_t i = 0; i < f->size(); ++i) {
|
||
|
double dev = (*f)[i].second - mean;
|
||
|
sum_sq_dev += dev * dev;
|
||
|
}
|
||
|
std::cout << "Mean = " << mean << " StdDev = "
|
||
|
<< sqrt(sum_sq_dev / f->size()) << std::endl;
|
||
|
}
|
||
|
}
|
||
|
#endif // <unused>
|
||
|
|
||
|
void VirtualSocketServer::UpdateDelayDistribution() {
|
||
|
Function* dist =
|
||
|
CreateDistribution(delay_mean_, delay_stddev_, delay_samples_);
|
||
|
// We take a lock just to make sure we don't leak memory.
|
||
|
{
|
||
|
CritScope cs(&delay_crit_);
|
||
|
delay_dist_.reset(dist);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static double PI = 4 * atan(1.0);
|
||
|
|
||
|
static double Normal(double x, double mean, double stddev) {
|
||
|
double a = (x - mean) * (x - mean) / (2 * stddev * stddev);
|
||
|
return exp(-a) / (stddev * sqrt(2 * PI));
|
||
|
}
|
||
|
|
||
|
#if 0 // static unused gives a warning
|
||
|
static double Pareto(double x, double min, double k) {
|
||
|
if (x < min)
|
||
|
return 0;
|
||
|
else
|
||
|
return k * std::pow(min, k) / std::pow(x, k+1);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
VirtualSocketServer::Function* VirtualSocketServer::CreateDistribution(
|
||
|
uint32_t mean,
|
||
|
uint32_t stddev,
|
||
|
uint32_t samples) {
|
||
|
Function* f = new Function();
|
||
|
|
||
|
if (0 == stddev) {
|
||
|
f->push_back(Point(mean, 1.0));
|
||
|
} else {
|
||
|
double start = 0;
|
||
|
if (mean >= 4 * static_cast<double>(stddev))
|
||
|
start = mean - 4 * static_cast<double>(stddev);
|
||
|
double end = mean + 4 * static_cast<double>(stddev);
|
||
|
|
||
|
for (uint32_t i = 0; i < samples; i++) {
|
||
|
double x = start + (end - start) * i / (samples - 1);
|
||
|
double y = Normal(x, mean, stddev);
|
||
|
f->push_back(Point(x, y));
|
||
|
}
|
||
|
}
|
||
|
return Resample(Invert(Accumulate(f)), 0, 1, samples);
|
||
|
}
|
||
|
|
||
|
uint32_t VirtualSocketServer::GetTransitDelay(Socket* socket) {
|
||
|
// Use the delay based on the address if it is set.
|
||
|
auto iter = delay_by_ip_.find(socket->GetLocalAddress().ipaddr());
|
||
|
if (iter != delay_by_ip_.end()) {
|
||
|
return static_cast<uint32_t>(iter->second);
|
||
|
}
|
||
|
// Otherwise, use the delay from the distribution distribution.
|
||
|
size_t index = rand() % delay_dist_->size();
|
||
|
double delay = (*delay_dist_)[index].second;
|
||
|
// RTC_LOG_F(LS_INFO) << "random[" << index << "] = " << delay;
|
||
|
return static_cast<uint32_t>(delay);
|
||
|
}
|
||
|
|
||
|
struct FunctionDomainCmp {
|
||
|
bool operator()(const VirtualSocketServer::Point& p1,
|
||
|
const VirtualSocketServer::Point& p2) {
|
||
|
return p1.first < p2.first;
|
||
|
}
|
||
|
bool operator()(double v1, const VirtualSocketServer::Point& p2) {
|
||
|
return v1 < p2.first;
|
||
|
}
|
||
|
bool operator()(const VirtualSocketServer::Point& p1, double v2) {
|
||
|
return p1.first < v2;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
VirtualSocketServer::Function* VirtualSocketServer::Accumulate(Function* f) {
|
||
|
RTC_DCHECK(f->size() >= 1);
|
||
|
double v = 0;
|
||
|
for (Function::size_type i = 0; i < f->size() - 1; ++i) {
|
||
|
double dx = (*f)[i + 1].first - (*f)[i].first;
|
||
|
double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2;
|
||
|
(*f)[i].second = v;
|
||
|
v = v + dx * avgy;
|
||
|
}
|
||
|
(*f)[f->size() - 1].second = v;
|
||
|
return f;
|
||
|
}
|
||
|
|
||
|
VirtualSocketServer::Function* VirtualSocketServer::Invert(Function* f) {
|
||
|
for (Function::size_type i = 0; i < f->size(); ++i)
|
||
|
std::swap((*f)[i].first, (*f)[i].second);
|
||
|
|
||
|
absl::c_sort(*f, FunctionDomainCmp());
|
||
|
return f;
|
||
|
}
|
||
|
|
||
|
VirtualSocketServer::Function* VirtualSocketServer::Resample(Function* f,
|
||
|
double x1,
|
||
|
double x2,
|
||
|
uint32_t samples) {
|
||
|
Function* g = new Function();
|
||
|
|
||
|
for (size_t i = 0; i < samples; i++) {
|
||
|
double x = x1 + (x2 - x1) * i / (samples - 1);
|
||
|
double y = Evaluate(f, x);
|
||
|
g->push_back(Point(x, y));
|
||
|
}
|
||
|
|
||
|
delete f;
|
||
|
return g;
|
||
|
}
|
||
|
|
||
|
double VirtualSocketServer::Evaluate(Function* f, double x) {
|
||
|
Function::iterator iter = absl::c_lower_bound(*f, x, FunctionDomainCmp());
|
||
|
if (iter == f->begin()) {
|
||
|
return (*f)[0].second;
|
||
|
} else if (iter == f->end()) {
|
||
|
RTC_DCHECK(f->size() >= 1);
|
||
|
return (*f)[f->size() - 1].second;
|
||
|
} else if (iter->first == x) {
|
||
|
return iter->second;
|
||
|
} else {
|
||
|
double x1 = (iter - 1)->first;
|
||
|
double y1 = (iter - 1)->second;
|
||
|
double x2 = iter->first;
|
||
|
double y2 = iter->second;
|
||
|
return y1 + (y2 - y1) * (x - x1) / (x2 - x1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool VirtualSocketServer::CanInteractWith(VirtualSocket* local,
|
||
|
VirtualSocket* remote) {
|
||
|
if (!local || !remote) {
|
||
|
return false;
|
||
|
}
|
||
|
IPAddress local_ip = local->GetLocalAddress().ipaddr();
|
||
|
IPAddress remote_ip = remote->GetLocalAddress().ipaddr();
|
||
|
IPAddress local_normalized = local_ip.Normalized();
|
||
|
IPAddress remote_normalized = remote_ip.Normalized();
|
||
|
// Check if the addresses are the same family after Normalization (turns
|
||
|
// mapped IPv6 address into IPv4 addresses).
|
||
|
// This will stop unmapped V6 addresses from talking to mapped V6 addresses.
|
||
|
if (local_normalized.family() == remote_normalized.family()) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY.
|
||
|
int remote_v6_only = 0;
|
||
|
remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only);
|
||
|
if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) {
|
||
|
return true;
|
||
|
}
|
||
|
// Same check, backwards.
|
||
|
int local_v6_only = 0;
|
||
|
local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only);
|
||
|
if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Check to see if either socket was explicitly bound to IPv6-any.
|
||
|
// These sockets can talk with anyone.
|
||
|
if (local_ip.family() == AF_INET6 && local->was_any()) {
|
||
|
return true;
|
||
|
}
|
||
|
if (remote_ip.family() == AF_INET6 && remote->was_any()) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
IPAddress VirtualSocketServer::GetDefaultRoute(int family) {
|
||
|
if (family == AF_INET) {
|
||
|
return default_route_v4_;
|
||
|
}
|
||
|
if (family == AF_INET6) {
|
||
|
return default_route_v6_;
|
||
|
}
|
||
|
return IPAddress();
|
||
|
}
|
||
|
void VirtualSocketServer::SetDefaultRoute(const IPAddress& from_addr) {
|
||
|
RTC_DCHECK(!IPIsAny(from_addr));
|
||
|
if (from_addr.family() == AF_INET) {
|
||
|
default_route_v4_ = from_addr;
|
||
|
} else if (from_addr.family() == AF_INET6) {
|
||
|
default_route_v6_ = from_addr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace rtc
|