Nagram/TMessagesProj/jni/boringssl/crypto/pkcs8/p5_pbev2.c

317 lines
12 KiB
C
Raw Normal View History

2015-09-24 20:52:02 +00:00
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 1999-2004.
*/
/* ====================================================================
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
2018-07-30 02:07:02 +00:00
#include <openssl/pkcs8.h>
#include <limits.h>
2015-09-24 20:52:02 +00:00
#include <string.h>
2018-07-30 02:07:02 +00:00
#include <openssl/bytestring.h>
2015-09-24 20:52:02 +00:00
#include <openssl/cipher.h>
#include <openssl/err.h>
#include <openssl/mem.h>
2018-07-30 02:07:02 +00:00
#include <openssl/nid.h>
2015-09-24 20:52:02 +00:00
#include <openssl/rand.h>
#include "internal.h"
2018-07-30 02:07:02 +00:00
#include "../internal.h"
// 1.2.840.113549.1.5.12
static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x05, 0x0c};
// 1.2.840.113549.1.5.13
static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x05, 0x0d};
// 1.2.840.113549.2.7
static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x02, 0x07};
2019-12-31 13:08:08 +00:00
// 1.2.840.113549.2.9
static const uint8_t kHMACWithSHA256[] = {0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x02, 0x09};
2018-07-30 02:07:02 +00:00
static const struct {
uint8_t oid[9];
uint8_t oid_len;
int nid;
const EVP_CIPHER *(*cipher_func)(void);
} kCipherOIDs[] = {
// 1.2.840.113549.3.2
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02},
8,
NID_rc2_cbc,
&EVP_rc2_cbc},
// 1.2.840.113549.3.7
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07},
8,
NID_des_ede3_cbc,
&EVP_des_ede3_cbc},
// 2.16.840.1.101.3.4.1.2
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02},
9,
NID_aes_128_cbc,
&EVP_aes_128_cbc},
// 2.16.840.1.101.3.4.1.22
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16},
9,
NID_aes_192_cbc,
&EVP_aes_192_cbc},
// 2.16.840.1.101.3.4.1.42
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a},
9,
NID_aes_256_cbc,
&EVP_aes_256_cbc},
};
static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) {
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) {
if (CBS_mem_equal(cbs, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len)) {
return kCipherOIDs[i].cipher_func();
}
}
return NULL;
2015-09-24 20:52:02 +00:00
}
2018-07-30 02:07:02 +00:00
static int add_cipher_oid(CBB *out, int nid) {
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) {
if (kCipherOIDs[i].nid == nid) {
CBB child;
return CBB_add_asn1(out, &child, CBS_ASN1_OBJECT) &&
CBB_add_bytes(&child, kCipherOIDs[i].oid,
kCipherOIDs[i].oid_len) &&
CBB_flush(out);
}
}
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
return 0;
}
2015-09-24 20:52:02 +00:00
2018-07-30 02:07:02 +00:00
static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
2019-12-31 13:08:08 +00:00
const EVP_MD *pbkdf2_md, unsigned iterations,
const char *pass, size_t pass_len,
const uint8_t *salt, size_t salt_len,
const uint8_t *iv, size_t iv_len, int enc) {
2018-07-30 02:07:02 +00:00
if (iv_len != EVP_CIPHER_iv_length(cipher)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS);
return 0;
}
uint8_t key[EVP_MAX_KEY_LENGTH];
2019-12-31 13:08:08 +00:00
int ret = PKCS5_PBKDF2_HMAC(pass, pass_len, salt, salt_len, iterations,
pbkdf2_md, EVP_CIPHER_key_length(cipher), key) &&
2018-07-30 02:07:02 +00:00
EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc);
OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
return ret;
}
2015-09-24 20:52:02 +00:00
2018-07-30 02:07:02 +00:00
int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *cipher, unsigned iterations,
const char *pass, size_t pass_len,
const uint8_t *salt, size_t salt_len) {
int cipher_nid = EVP_CIPHER_nid(cipher);
if (cipher_nid == NID_undef) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER);
return 0;
}
// Generate a random IV.
uint8_t iv[EVP_MAX_IV_LENGTH];
if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) {
return 0;
}
// See RFC 2898, appendix A.
CBB algorithm, oid, param, kdf, kdf_oid, kdf_param, salt_cbb, cipher_cbb,
iv_cbb;
if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, kPBES2, sizeof(kPBES2)) ||
!CBB_add_asn1(&algorithm, &param, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&param, &kdf, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&kdf, &kdf_oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&kdf_oid, kPBKDF2, sizeof(kPBKDF2)) ||
!CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&kdf_param, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
!CBB_add_bytes(&salt_cbb, salt, salt_len) ||
!CBB_add_asn1_uint64(&kdf_param, iterations) ||
// Specify a key length for RC2.
(cipher_nid == NID_rc2_cbc &&
!CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) ||
// Omit the PRF. We use the default hmacWithSHA1.
!CBB_add_asn1(&param, &cipher_cbb, CBS_ASN1_SEQUENCE) ||
!add_cipher_oid(&cipher_cbb, cipher_nid) ||
// RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and
// IV, but OpenSSL always uses an OCTET STRING IV, so we do the same.
!CBB_add_asn1(&cipher_cbb, &iv_cbb, CBS_ASN1_OCTETSTRING) ||
!CBB_add_bytes(&iv_cbb, iv, EVP_CIPHER_iv_length(cipher)) ||
!CBB_flush(out)) {
return 0;
}
2019-12-31 13:08:08 +00:00
return pkcs5_pbe2_cipher_init(ctx, cipher, EVP_sha1(), iterations, pass,
pass_len, salt, salt_len, iv,
EVP_CIPHER_iv_length(cipher), 1 /* encrypt */);
2018-07-30 02:07:02 +00:00
}
2015-09-24 20:52:02 +00:00
2018-07-30 02:07:02 +00:00
int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx,
const char *pass, size_t pass_len, CBS *param) {
CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj;
if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
CBS_len(param) != 0 ||
!CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) ||
CBS_len(&pbe_param) != 0 ||
!CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
return 0;
}
// Only PBKDF2 is supported.
if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION);
return 0;
}
// See if we recognise the encryption algorithm.
const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj);
if (cipher == NULL) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
return 0;
}
// Parse the KDF parameters. See RFC 8018, appendix A.2.
CBS pbkdf2_params, salt;
uint64_t iterations;
if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) ||
CBS_len(&kdf) != 0 ||
!CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) ||
!CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
return 0;
}
2019-12-31 13:08:08 +00:00
if (!pkcs12_iterations_acceptable(iterations)) {
2018-07-30 02:07:02 +00:00
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
return 0;
}
// The optional keyLength parameter, if present, must match the key length of
// the cipher.
if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) {
uint64_t key_len;
if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
return 0;
}
if (key_len != EVP_CIPHER_key_length(cipher)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH);
return 0;
}
}
2019-12-31 13:08:08 +00:00
const EVP_MD *md = EVP_sha1();
2018-07-30 02:07:02 +00:00
if (CBS_len(&pbkdf2_params) != 0) {
CBS alg_id, prf;
if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) ||
CBS_len(&pbkdf2_params) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
return 0;
}
2019-12-31 13:08:08 +00:00
if (CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) {
// hmacWithSHA1 is the DEFAULT, so DER requires it be omitted, but we
// match OpenSSL in tolerating it being present.
md = EVP_sha1();
} else if (CBS_mem_equal(&prf, kHMACWithSHA256, sizeof(kHMACWithSHA256))) {
md = EVP_sha256();
} else {
2018-07-30 02:07:02 +00:00
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
return 0;
}
2019-12-31 13:08:08 +00:00
// All supported PRFs use a NULL parameter.
2018-07-30 02:07:02 +00:00
CBS null;
if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) ||
CBS_len(&null) != 0 ||
CBS_len(&alg_id) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
return 0;
}
}
// Parse the encryption scheme parameters. Note OpenSSL does not match the
// specification. Per RFC 2898, this should depend on the encryption scheme.
// In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with
// OpenSSL.
CBS iv;
if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) ||
CBS_len(&enc_scheme) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
return 0;
}
2019-12-31 13:08:08 +00:00
return pkcs5_pbe2_cipher_init(ctx, cipher, md, (unsigned)iterations, pass,
2018-07-30 02:07:02 +00:00
pass_len, CBS_data(&salt), CBS_len(&salt),
CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */);
}