Nagram/TMessagesProj/jni/boringssl/ssl/test/runner/sike/arith.go

375 lines
9.6 KiB
Go
Raw Normal View History

2019-12-31 13:08:08 +00:00
// Copyright (c) 2019, Cloudflare Inc.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
package sike
import (
"math/bits"
)
// Compute z = x + y (mod 2*p).
func fpAddRdc(z, x, y *Fp) {
var carry uint64
// z=x+y % p
for i := 0; i < FP_WORDS; i++ {
z[i], carry = bits.Add64(x[i], y[i], carry)
}
// z = z - pX2
carry = 0
for i := 0; i < FP_WORDS; i++ {
z[i], carry = bits.Sub64(z[i], pX2[i], carry)
}
// if z<0 add pX2 back
mask := uint64(0 - carry)
carry = 0
for i := 0; i < FP_WORDS; i++ {
z[i], carry = bits.Add64(z[i], pX2[i]&mask, carry)
}
}
// Compute z = x - y (mod 2*p).
func fpSubRdc(z, x, y *Fp) {
var borrow uint64
// z = z - pX2
for i := 0; i < FP_WORDS; i++ {
z[i], borrow = bits.Sub64(x[i], y[i], borrow)
}
// if z<0 add pX2 back
mask := uint64(0 - borrow)
borrow = 0
for i := 0; i < FP_WORDS; i++ {
z[i], borrow = bits.Add64(z[i], pX2[i]&mask, borrow)
}
}
// Reduce a field element in [0, 2*p) to one in [0,p).
func fpRdcP(x *Fp) {
var borrow, mask uint64
for i := 0; i < FP_WORDS; i++ {
x[i], borrow = bits.Sub64(x[i], p[i], borrow)
}
// Sets all bits if borrow = 1
mask = 0 - borrow
borrow = 0
for i := 0; i < FP_WORDS; i++ {
x[i], borrow = bits.Add64(x[i], p[i]&mask, borrow)
}
}
// Implementation doesn't actually depend on a prime field.
func fpSwapCond(x, y *Fp, mask uint8) {
if mask != 0 {
var tmp Fp
copy(tmp[:], y[:])
copy(y[:], x[:])
copy(x[:], tmp[:])
}
}
// Compute z = x * y.
func fpMul(z *FpX2, x, y *Fp) {
var carry, t, u, v uint64
var hi, lo uint64
for i := uint64(0); i < FP_WORDS; i++ {
for j := uint64(0); j <= i; j++ {
hi, lo = bits.Mul64(x[j], y[i-j])
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t += carry
}
z[i] = v
v = u
u = t
t = 0
}
for i := FP_WORDS; i < (2*FP_WORDS)-1; i++ {
for j := i - FP_WORDS + 1; j < FP_WORDS; j++ {
hi, lo = bits.Mul64(x[j], y[i-j])
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t += carry
}
z[i] = v
v = u
u = t
t = 0
}
z[2*FP_WORDS-1] = v
}
// Perform Montgomery reduction: set z = x R^{-1} (mod 2*p)
// with R=2^512. Destroys the input value.
func fpMontRdc(z *Fp, x *FpX2) {
var carry, t, u, v uint64
var hi, lo uint64
var count int
count = 3 // number of 0 digits in the least significat part of p + 1
for i := 0; i < FP_WORDS; i++ {
for j := 0; j < i; j++ {
if j < (i - count + 1) {
hi, lo = bits.Mul64(z[j], p1[i-j])
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t += carry
}
}
v, carry = bits.Add64(v, x[i], 0)
u, carry = bits.Add64(u, 0, carry)
t += carry
z[i] = v
v = u
u = t
t = 0
}
for i := FP_WORDS; i < 2*FP_WORDS-1; i++ {
if count > 0 {
count--
}
for j := i - FP_WORDS + 1; j < FP_WORDS; j++ {
if j < (FP_WORDS - count) {
hi, lo = bits.Mul64(z[j], p1[i-j])
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t += carry
}
}
v, carry = bits.Add64(v, x[i], 0)
u, carry = bits.Add64(u, 0, carry)
t += carry
z[i-FP_WORDS] = v
v = u
u = t
t = 0
}
v, carry = bits.Add64(v, x[2*FP_WORDS-1], 0)
z[FP_WORDS-1] = v
}
// Compute z = x + y, without reducing mod p.
func fp2Add(z, x, y *FpX2) {
var carry uint64
for i := 0; i < 2*FP_WORDS; i++ {
z[i], carry = bits.Add64(x[i], y[i], carry)
}
}
// Compute z = x - y, without reducing mod p.
func fp2Sub(z, x, y *FpX2) {
var borrow, mask uint64
for i := 0; i < 2*FP_WORDS; i++ {
z[i], borrow = bits.Sub64(x[i], y[i], borrow)
}
// Sets all bits if borrow = 1
mask = 0 - borrow
borrow = 0
for i := FP_WORDS; i < 2*FP_WORDS; i++ {
z[i], borrow = bits.Add64(z[i], p[i-FP_WORDS]&mask, borrow)
}
}
// Montgomery multiplication. Input values must be already
// in Montgomery domain.
func fpMulRdc(dest, lhs, rhs *Fp) {
a := lhs // = a*R
b := rhs // = b*R
var ab FpX2
fpMul(&ab, a, b) // = a*b*R*R
fpMontRdc(dest, &ab) // = a*b*R mod p
}
// Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x).
// Uses variation of sliding-window algorithm from with window size
// of 5 and least to most significant bit sliding (left-to-right)
// See HAC 14.85 for general description.
//
// Allowed to overlap x with dest.
// All values in Montgomery domains
// Set dest = x^(2^k), for k >= 1, by repeated squarings.
func p34(dest, x *Fp) {
var lookup [16]Fp
// This performs sum(powStrategy) + 1 squarings and len(lookup) + len(mulStrategy)
// multiplications.
powStrategy := []uint8{
0x03, 0x0A, 0x07, 0x05, 0x06, 0x05, 0x03, 0x08, 0x04, 0x07,
0x05, 0x06, 0x04, 0x05, 0x09, 0x06, 0x03, 0x0B, 0x05, 0x05,
0x02, 0x08, 0x04, 0x07, 0x07, 0x08, 0x05, 0x06, 0x04, 0x08,
0x05, 0x02, 0x0A, 0x06, 0x05, 0x04, 0x08, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x01}
mulStrategy := []uint8{
0x02, 0x0F, 0x09, 0x08, 0x0E, 0x0C, 0x02, 0x08, 0x05, 0x0F,
0x08, 0x0F, 0x06, 0x06, 0x03, 0x02, 0x00, 0x0A, 0x09, 0x0D,
0x01, 0x0C, 0x03, 0x07, 0x01, 0x0A, 0x08, 0x0B, 0x02, 0x0F,
0x0E, 0x01, 0x0B, 0x0C, 0x0E, 0x03, 0x0B, 0x0F, 0x0F, 0x0F,
0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x00}
initialMul := uint8(8)
// Precompute lookup table of odd multiples of x for window
// size k=5.
var xx Fp
fpMulRdc(&xx, x, x)
lookup[0] = *x
for i := 1; i < 16; i++ {
fpMulRdc(&lookup[i], &lookup[i-1], &xx)
}
// Now lookup = {x, x^3, x^5, ... }
// so that lookup[i] = x^{2*i + 1}
// so that lookup[k/2] = x^k, for odd k
*dest = lookup[initialMul]
for i := uint8(0); i < uint8(len(powStrategy)); i++ {
fpMulRdc(dest, dest, dest)
for j := uint8(1); j < powStrategy[i]; j++ {
fpMulRdc(dest, dest, dest)
}
fpMulRdc(dest, dest, &lookup[mulStrategy[i]])
}
}
func add(dest, lhs, rhs *Fp2) {
fpAddRdc(&dest.A, &lhs.A, &rhs.A)
fpAddRdc(&dest.B, &lhs.B, &rhs.B)
}
func sub(dest, lhs, rhs *Fp2) {
fpSubRdc(&dest.A, &lhs.A, &rhs.A)
fpSubRdc(&dest.B, &lhs.B, &rhs.B)
}
func mul(dest, lhs, rhs *Fp2) {
// Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b).
a := &lhs.A
b := &lhs.B
c := &rhs.A
d := &rhs.B
// We want to compute
//
// (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i
//
// Use Karatsuba's trick: note that
//
// (b - a)*(c - d) = (b*c + a*d) - a*c - b*d
//
// so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d.
var ac, bd FpX2
fpMul(&ac, a, c) // = a*c*R*R
fpMul(&bd, b, d) // = b*d*R*R
var b_minus_a, c_minus_d Fp
fpSubRdc(&b_minus_a, b, a) // = (b-a)*R
fpSubRdc(&c_minus_d, c, d) // = (c-d)*R
var ad_plus_bc FpX2
fpMul(&ad_plus_bc, &b_minus_a, &c_minus_d) // = (b-a)*(c-d)*R*R
fp2Add(&ad_plus_bc, &ad_plus_bc, &ac) // = ((b-a)*(c-d) + a*c)*R*R
fp2Add(&ad_plus_bc, &ad_plus_bc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R
fpMontRdc(&dest.B, &ad_plus_bc) // = (a*d + b*c)*R mod p
var ac_minus_bd FpX2
fp2Sub(&ac_minus_bd, &ac, &bd) // = (a*c - b*d)*R*R
fpMontRdc(&dest.A, &ac_minus_bd) // = (a*c - b*d)*R mod p
}
func inv(dest, x *Fp2) {
var a2PlusB2 Fp
var asq, bsq FpX2
var ac FpX2
var minusB Fp
var minusBC FpX2
a := &x.A
b := &x.B
// We want to compute
//
// 1 1 (a - bi) (a - bi)
// -------- = -------- -------- = -----------
// (a + bi) (a + bi) (a - bi) (a^2 + b^2)
//
// Letting c = 1/(a^2 + b^2), this is
//
// 1/(a+bi) = a*c - b*ci.
fpMul(&asq, a, a) // = a*a*R*R
fpMul(&bsq, b, b) // = b*b*R*R
fp2Add(&asq, &asq, &bsq) // = (a^2 + b^2)*R*R
fpMontRdc(&a2PlusB2, &asq) // = (a^2 + b^2)*R mod p
// Now a2PlusB2 = a^2 + b^2
inv := a2PlusB2
fpMulRdc(&inv, &a2PlusB2, &a2PlusB2)
p34(&inv, &inv)
fpMulRdc(&inv, &inv, &inv)
fpMulRdc(&inv, &inv, &a2PlusB2)
fpMul(&ac, a, &inv)
fpMontRdc(&dest.A, &ac)
fpSubRdc(&minusB, &minusB, b)
fpMul(&minusBC, &minusB, &inv)
fpMontRdc(&dest.B, &minusBC)
}
func sqr(dest, x *Fp2) {
var a2, aPlusB, aMinusB Fp
var a2MinB2, ab2 FpX2
a := &x.A
b := &x.B
// (a + bi)*(a + bi) = (a^2 - b^2) + 2abi.
fpAddRdc(&a2, a, a) // = a*R + a*R = 2*a*R
fpAddRdc(&aPlusB, a, b) // = a*R + b*R = (a+b)*R
fpSubRdc(&aMinusB, a, b) // = a*R - b*R = (a-b)*R
fpMul(&a2MinB2, &aPlusB, &aMinusB) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R
fpMul(&ab2, &a2, b) // = 2*a*b*R*R
fpMontRdc(&dest.A, &a2MinB2) // = (a^2 - b^2)*R mod p
fpMontRdc(&dest.B, &ab2) // = 2*a*b*R mod p
}
// In case choice == 1, performs following swap in constant time:
// xPx <-> xQx
// xPz <-> xQz
// Otherwise returns xPx, xPz, xQx, xQz unchanged
func condSwap(xPx, xPz, xQx, xQz *Fp2, choice uint8) {
fpSwapCond(&xPx.A, &xQx.A, choice)
fpSwapCond(&xPx.B, &xQx.B, choice)
fpSwapCond(&xPz.A, &xQz.A, choice)
fpSwapCond(&xPz.B, &xQz.B, choice)
}