684 lines
20 KiB
Go
684 lines
20 KiB
Go
|
// Copyright (c) 2019, Cloudflare Inc.
|
||
|
//
|
||
|
// Permission to use, copy, modify, and/or distribute this software for any
|
||
|
// purpose with or without fee is hereby granted, provided that the above
|
||
|
// copyright notice and this permission notice appear in all copies.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||
|
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||
|
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||
|
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
|
|
||
|
package sike
|
||
|
|
||
|
import (
|
||
|
"crypto/sha256"
|
||
|
"crypto/subtle"
|
||
|
"errors"
|
||
|
"io"
|
||
|
)
|
||
|
|
||
|
// Zeroize Fp2
|
||
|
func zeroize(fp *Fp2) {
|
||
|
// Zeroizing in 2 separated loops tells compiler to
|
||
|
// use fast runtime.memclr()
|
||
|
for i := range fp.A {
|
||
|
fp.A[i] = 0
|
||
|
}
|
||
|
for i := range fp.B {
|
||
|
fp.B[i] = 0
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Convert the input to wire format.
|
||
|
//
|
||
|
// The output byte slice must be at least 2*bytelen(p) bytes long.
|
||
|
func convFp2ToBytes(output []byte, fp2 *Fp2) {
|
||
|
if len(output) < 2*Params.Bytelen {
|
||
|
panic("output byte slice too short")
|
||
|
}
|
||
|
var a Fp2
|
||
|
fromMontDomain(fp2, &a)
|
||
|
|
||
|
// convert to bytes in little endian form
|
||
|
for i := 0; i < Params.Bytelen; i++ {
|
||
|
// set i = j*8 + k
|
||
|
tmp := i / 8
|
||
|
k := uint64(i % 8)
|
||
|
output[i] = byte(a.A[tmp] >> (8 * k))
|
||
|
output[i+Params.Bytelen] = byte(a.B[tmp] >> (8 * k))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Read 2*bytelen(p) bytes into the given ExtensionFieldElement.
|
||
|
//
|
||
|
// It is an error to call this function if the input byte slice is less than 2*bytelen(p) bytes long.
|
||
|
func convBytesToFp2(fp2 *Fp2, input []byte) {
|
||
|
if len(input) < 2*Params.Bytelen {
|
||
|
panic("input byte slice too short")
|
||
|
}
|
||
|
|
||
|
for i := 0; i < Params.Bytelen; i++ {
|
||
|
j := i / 8
|
||
|
k := uint64(i % 8)
|
||
|
fp2.A[j] |= uint64(input[i]) << (8 * k)
|
||
|
fp2.B[j] |= uint64(input[i+Params.Bytelen]) << (8 * k)
|
||
|
}
|
||
|
toMontDomain(fp2)
|
||
|
}
|
||
|
|
||
|
// -----------------------------------------------------------------------------
|
||
|
// Functions for traversing isogeny trees acoording to strategy. Key type 'A' is
|
||
|
//
|
||
|
|
||
|
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
|
||
|
// for public key generation.
|
||
|
func traverseTreePublicKeyA(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint, pub *PublicKey) {
|
||
|
var points = make([]ProjectivePoint, 0, 8)
|
||
|
var indices = make([]int, 0, 8)
|
||
|
var i, sidx int
|
||
|
|
||
|
cparam := CalcCurveParamsEquiv4(curve)
|
||
|
phi := NewIsogeny4()
|
||
|
strat := pub.params.A.IsogenyStrategy
|
||
|
stratSz := len(strat)
|
||
|
|
||
|
for j := 1; j <= stratSz; j++ {
|
||
|
for i <= stratSz-j {
|
||
|
points = append(points, *xR)
|
||
|
indices = append(indices, i)
|
||
|
|
||
|
k := strat[sidx]
|
||
|
sidx++
|
||
|
Pow2k(xR, &cparam, 2*k)
|
||
|
i += int(k)
|
||
|
}
|
||
|
|
||
|
cparam = phi.GenerateCurve(xR)
|
||
|
for k := 0; k < len(points); k++ {
|
||
|
points[k] = phi.EvaluatePoint(&points[k])
|
||
|
}
|
||
|
|
||
|
*phiP = phi.EvaluatePoint(phiP)
|
||
|
*phiQ = phi.EvaluatePoint(phiQ)
|
||
|
*phiR = phi.EvaluatePoint(phiR)
|
||
|
|
||
|
// pop xR from points
|
||
|
*xR, points = points[len(points)-1], points[:len(points)-1]
|
||
|
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Traverses isogeny tree in order to compute xR needed
|
||
|
// for public key generation.
|
||
|
func traverseTreeSharedKeyA(curve *ProjectiveCurveParameters, xR *ProjectivePoint, pub *PublicKey) {
|
||
|
var points = make([]ProjectivePoint, 0, 8)
|
||
|
var indices = make([]int, 0, 8)
|
||
|
var i, sidx int
|
||
|
|
||
|
cparam := CalcCurveParamsEquiv4(curve)
|
||
|
phi := NewIsogeny4()
|
||
|
strat := pub.params.A.IsogenyStrategy
|
||
|
stratSz := len(strat)
|
||
|
|
||
|
for j := 1; j <= stratSz; j++ {
|
||
|
for i <= stratSz-j {
|
||
|
points = append(points, *xR)
|
||
|
indices = append(indices, i)
|
||
|
|
||
|
k := strat[sidx]
|
||
|
sidx++
|
||
|
Pow2k(xR, &cparam, 2*k)
|
||
|
i += int(k)
|
||
|
}
|
||
|
|
||
|
cparam = phi.GenerateCurve(xR)
|
||
|
for k := 0; k < len(points); k++ {
|
||
|
points[k] = phi.EvaluatePoint(&points[k])
|
||
|
}
|
||
|
|
||
|
// pop xR from points
|
||
|
*xR, points = points[len(points)-1], points[:len(points)-1]
|
||
|
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
|
||
|
// for public key generation.
|
||
|
func traverseTreePublicKeyB(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint, pub *PublicKey) {
|
||
|
var points = make([]ProjectivePoint, 0, 8)
|
||
|
var indices = make([]int, 0, 8)
|
||
|
var i, sidx int
|
||
|
|
||
|
cparam := CalcCurveParamsEquiv3(curve)
|
||
|
phi := NewIsogeny3()
|
||
|
strat := pub.params.B.IsogenyStrategy
|
||
|
stratSz := len(strat)
|
||
|
|
||
|
for j := 1; j <= stratSz; j++ {
|
||
|
for i <= stratSz-j {
|
||
|
points = append(points, *xR)
|
||
|
indices = append(indices, i)
|
||
|
|
||
|
k := strat[sidx]
|
||
|
sidx++
|
||
|
Pow3k(xR, &cparam, k)
|
||
|
i += int(k)
|
||
|
}
|
||
|
|
||
|
cparam = phi.GenerateCurve(xR)
|
||
|
for k := 0; k < len(points); k++ {
|
||
|
points[k] = phi.EvaluatePoint(&points[k])
|
||
|
}
|
||
|
|
||
|
*phiP = phi.EvaluatePoint(phiP)
|
||
|
*phiQ = phi.EvaluatePoint(phiQ)
|
||
|
*phiR = phi.EvaluatePoint(phiR)
|
||
|
|
||
|
// pop xR from points
|
||
|
*xR, points = points[len(points)-1], points[:len(points)-1]
|
||
|
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
|
||
|
// for public key generation.
|
||
|
func traverseTreeSharedKeyB(curve *ProjectiveCurveParameters, xR *ProjectivePoint, pub *PublicKey) {
|
||
|
var points = make([]ProjectivePoint, 0, 8)
|
||
|
var indices = make([]int, 0, 8)
|
||
|
var i, sidx int
|
||
|
|
||
|
cparam := CalcCurveParamsEquiv3(curve)
|
||
|
phi := NewIsogeny3()
|
||
|
strat := pub.params.B.IsogenyStrategy
|
||
|
stratSz := len(strat)
|
||
|
|
||
|
for j := 1; j <= stratSz; j++ {
|
||
|
for i <= stratSz-j {
|
||
|
points = append(points, *xR)
|
||
|
indices = append(indices, i)
|
||
|
|
||
|
k := strat[sidx]
|
||
|
sidx++
|
||
|
Pow3k(xR, &cparam, k)
|
||
|
i += int(k)
|
||
|
}
|
||
|
|
||
|
cparam = phi.GenerateCurve(xR)
|
||
|
for k := 0; k < len(points); k++ {
|
||
|
points[k] = phi.EvaluatePoint(&points[k])
|
||
|
}
|
||
|
|
||
|
// pop xR from points
|
||
|
*xR, points = points[len(points)-1], points[:len(points)-1]
|
||
|
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Generate a public key in the 2-torsion group
|
||
|
func publicKeyGenA(prv *PrivateKey) (pub *PublicKey) {
|
||
|
var xPA, xQA, xRA ProjectivePoint
|
||
|
var xPB, xQB, xRB, xK ProjectivePoint
|
||
|
var invZP, invZQ, invZR Fp2
|
||
|
|
||
|
pub = NewPublicKey(KeyVariant_SIDH_A)
|
||
|
var phi = NewIsogeny4()
|
||
|
|
||
|
// Load points for A
|
||
|
xPA = ProjectivePoint{X: prv.params.A.Affine_P, Z: prv.params.OneFp2}
|
||
|
xQA = ProjectivePoint{X: prv.params.A.Affine_Q, Z: prv.params.OneFp2}
|
||
|
xRA = ProjectivePoint{X: prv.params.A.Affine_R, Z: prv.params.OneFp2}
|
||
|
|
||
|
// Load points for B
|
||
|
xRB = ProjectivePoint{X: prv.params.B.Affine_R, Z: prv.params.OneFp2}
|
||
|
xQB = ProjectivePoint{X: prv.params.B.Affine_Q, Z: prv.params.OneFp2}
|
||
|
xPB = ProjectivePoint{X: prv.params.B.Affine_P, Z: prv.params.OneFp2}
|
||
|
|
||
|
// Find isogeny kernel
|
||
|
xK = ScalarMul3Pt(&pub.params.InitCurve, &xPA, &xQA, &xRA, prv.params.A.SecretBitLen, prv.Scalar)
|
||
|
traverseTreePublicKeyA(&pub.params.InitCurve, &xK, &xPB, &xQB, &xRB, pub)
|
||
|
|
||
|
// Secret isogeny
|
||
|
phi.GenerateCurve(&xK)
|
||
|
xPA = phi.EvaluatePoint(&xPB)
|
||
|
xQA = phi.EvaluatePoint(&xQB)
|
||
|
xRA = phi.EvaluatePoint(&xRB)
|
||
|
Fp2Batch3Inv(&xPA.Z, &xQA.Z, &xRA.Z, &invZP, &invZQ, &invZR)
|
||
|
|
||
|
mul(&pub.affine_xP, &xPA.X, &invZP)
|
||
|
mul(&pub.affine_xQ, &xQA.X, &invZQ)
|
||
|
mul(&pub.affine_xQmP, &xRA.X, &invZR)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Generate a public key in the 3-torsion group
|
||
|
func publicKeyGenB(prv *PrivateKey) (pub *PublicKey) {
|
||
|
var xPB, xQB, xRB, xK ProjectivePoint
|
||
|
var xPA, xQA, xRA ProjectivePoint
|
||
|
var invZP, invZQ, invZR Fp2
|
||
|
|
||
|
pub = NewPublicKey(prv.keyVariant)
|
||
|
var phi = NewIsogeny3()
|
||
|
|
||
|
// Load points for B
|
||
|
xRB = ProjectivePoint{X: prv.params.B.Affine_R, Z: prv.params.OneFp2}
|
||
|
xQB = ProjectivePoint{X: prv.params.B.Affine_Q, Z: prv.params.OneFp2}
|
||
|
xPB = ProjectivePoint{X: prv.params.B.Affine_P, Z: prv.params.OneFp2}
|
||
|
|
||
|
// Load points for A
|
||
|
xPA = ProjectivePoint{X: prv.params.A.Affine_P, Z: prv.params.OneFp2}
|
||
|
xQA = ProjectivePoint{X: prv.params.A.Affine_Q, Z: prv.params.OneFp2}
|
||
|
xRA = ProjectivePoint{X: prv.params.A.Affine_R, Z: prv.params.OneFp2}
|
||
|
|
||
|
xK = ScalarMul3Pt(&pub.params.InitCurve, &xPB, &xQB, &xRB, prv.params.B.SecretBitLen, prv.Scalar)
|
||
|
traverseTreePublicKeyB(&pub.params.InitCurve, &xK, &xPA, &xQA, &xRA, pub)
|
||
|
|
||
|
phi.GenerateCurve(&xK)
|
||
|
xPB = phi.EvaluatePoint(&xPA)
|
||
|
xQB = phi.EvaluatePoint(&xQA)
|
||
|
xRB = phi.EvaluatePoint(&xRA)
|
||
|
Fp2Batch3Inv(&xPB.Z, &xQB.Z, &xRB.Z, &invZP, &invZQ, &invZR)
|
||
|
|
||
|
mul(&pub.affine_xP, &xPB.X, &invZP)
|
||
|
mul(&pub.affine_xQ, &xQB.X, &invZQ)
|
||
|
mul(&pub.affine_xQmP, &xRB.X, &invZR)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// -----------------------------------------------------------------------------
|
||
|
// Key agreement functions
|
||
|
//
|
||
|
|
||
|
// Establishing shared keys in in 2-torsion group
|
||
|
func deriveSecretA(prv *PrivateKey, pub *PublicKey) []byte {
|
||
|
var sharedSecret = make([]byte, pub.params.SharedSecretSize)
|
||
|
var xP, xQ, xQmP ProjectivePoint
|
||
|
var xK ProjectivePoint
|
||
|
var cparam ProjectiveCurveParameters
|
||
|
var phi = NewIsogeny4()
|
||
|
var jInv Fp2
|
||
|
|
||
|
// Recover curve coefficients
|
||
|
RecoverCoordinateA(&cparam, &pub.affine_xP, &pub.affine_xQ, &pub.affine_xQmP)
|
||
|
// C=1
|
||
|
cparam.C = Params.OneFp2
|
||
|
|
||
|
// Find kernel of the morphism
|
||
|
xP = ProjectivePoint{X: pub.affine_xP, Z: pub.params.OneFp2}
|
||
|
xQ = ProjectivePoint{X: pub.affine_xQ, Z: pub.params.OneFp2}
|
||
|
xQmP = ProjectivePoint{X: pub.affine_xQmP, Z: pub.params.OneFp2}
|
||
|
xK = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, pub.params.A.SecretBitLen, prv.Scalar)
|
||
|
|
||
|
// Traverse isogeny tree
|
||
|
traverseTreeSharedKeyA(&cparam, &xK, pub)
|
||
|
|
||
|
// Calculate j-invariant on isogeneus curve
|
||
|
c := phi.GenerateCurve(&xK)
|
||
|
RecoverCurveCoefficients4(&cparam, &c)
|
||
|
Jinvariant(&cparam, &jInv)
|
||
|
convFp2ToBytes(sharedSecret, &jInv)
|
||
|
return sharedSecret
|
||
|
}
|
||
|
|
||
|
// Establishing shared keys in in 3-torsion group
|
||
|
func deriveSecretB(prv *PrivateKey, pub *PublicKey) []byte {
|
||
|
var sharedSecret = make([]byte, pub.params.SharedSecretSize)
|
||
|
var xP, xQ, xQmP ProjectivePoint
|
||
|
var xK ProjectivePoint
|
||
|
var cparam ProjectiveCurveParameters
|
||
|
var phi = NewIsogeny3()
|
||
|
var jInv Fp2
|
||
|
|
||
|
// Recover curve A coefficient
|
||
|
RecoverCoordinateA(&cparam, &pub.affine_xP, &pub.affine_xQ, &pub.affine_xQmP)
|
||
|
// C=1
|
||
|
cparam.C = Params.OneFp2
|
||
|
|
||
|
// Find kernel of the morphism
|
||
|
xP = ProjectivePoint{X: pub.affine_xP, Z: pub.params.OneFp2}
|
||
|
xQ = ProjectivePoint{X: pub.affine_xQ, Z: pub.params.OneFp2}
|
||
|
xQmP = ProjectivePoint{X: pub.affine_xQmP, Z: pub.params.OneFp2}
|
||
|
xK = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, pub.params.B.SecretBitLen, prv.Scalar)
|
||
|
|
||
|
// Traverse isogeny tree
|
||
|
traverseTreeSharedKeyB(&cparam, &xK, pub)
|
||
|
|
||
|
// Calculate j-invariant on isogeneus curve
|
||
|
c := phi.GenerateCurve(&xK)
|
||
|
RecoverCurveCoefficients3(&cparam, &c)
|
||
|
Jinvariant(&cparam, &jInv)
|
||
|
convFp2ToBytes(sharedSecret, &jInv)
|
||
|
return sharedSecret
|
||
|
}
|
||
|
|
||
|
func encrypt(skA *PrivateKey, pkA, pkB *PublicKey, ptext []byte) ([]byte, error) {
|
||
|
if pkB.keyVariant != KeyVariant_SIKE {
|
||
|
return nil, errors.New("wrong key type")
|
||
|
}
|
||
|
|
||
|
j, err := DeriveSecret(skA, pkB)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if len(ptext) != pkA.params.KemSize {
|
||
|
panic("Implementation error")
|
||
|
}
|
||
|
|
||
|
digest := sha256.Sum256(j)
|
||
|
// Uses truncated digest (first 16-bytes)
|
||
|
for i, _ := range ptext {
|
||
|
digest[i] ^= ptext[i]
|
||
|
}
|
||
|
|
||
|
ret := make([]byte, pkA.Size()+len(ptext))
|
||
|
copy(ret, pkA.Export())
|
||
|
copy(ret[pkA.Size():], digest[:pkA.params.KemSize])
|
||
|
return ret, nil
|
||
|
}
|
||
|
|
||
|
// NewPrivateKey initializes private key.
|
||
|
// Usage of this function guarantees that the object is correctly initialized.
|
||
|
func NewPrivateKey(v KeyVariant) *PrivateKey {
|
||
|
prv := &PrivateKey{key: key{params: &Params, keyVariant: v}}
|
||
|
if (v & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
|
||
|
prv.Scalar = make([]byte, prv.params.A.SecretByteLen)
|
||
|
} else {
|
||
|
prv.Scalar = make([]byte, prv.params.B.SecretByteLen)
|
||
|
}
|
||
|
if v == KeyVariant_SIKE {
|
||
|
prv.S = make([]byte, prv.params.MsgLen)
|
||
|
}
|
||
|
return prv
|
||
|
}
|
||
|
|
||
|
// NewPublicKey initializes public key.
|
||
|
// Usage of this function guarantees that the object is correctly initialized.
|
||
|
func NewPublicKey(v KeyVariant) *PublicKey {
|
||
|
return &PublicKey{key: key{params: &Params, keyVariant: v}}
|
||
|
}
|
||
|
|
||
|
// Import clears content of the public key currently stored in the structure
|
||
|
// and imports key stored in the byte string. Returns error in case byte string
|
||
|
// size is wrong. Doesn't perform any validation.
|
||
|
func (pub *PublicKey) Import(input []byte) error {
|
||
|
if len(input) != pub.Size() {
|
||
|
return errors.New("sidh: input to short")
|
||
|
}
|
||
|
ssSz := pub.params.SharedSecretSize
|
||
|
convBytesToFp2(&pub.affine_xP, input[0:ssSz])
|
||
|
convBytesToFp2(&pub.affine_xQ, input[ssSz:2*ssSz])
|
||
|
convBytesToFp2(&pub.affine_xQmP, input[2*ssSz:3*ssSz])
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Exports currently stored key. In case structure hasn't been filled with key data
|
||
|
// returned byte string is filled with zeros.
|
||
|
func (pub *PublicKey) Export() []byte {
|
||
|
output := make([]byte, pub.params.PublicKeySize)
|
||
|
ssSz := pub.params.SharedSecretSize
|
||
|
convFp2ToBytes(output[0:ssSz], &pub.affine_xP)
|
||
|
convFp2ToBytes(output[ssSz:2*ssSz], &pub.affine_xQ)
|
||
|
convFp2ToBytes(output[2*ssSz:3*ssSz], &pub.affine_xQmP)
|
||
|
return output
|
||
|
}
|
||
|
|
||
|
// Size returns size of the public key in bytes
|
||
|
func (pub *PublicKey) Size() int {
|
||
|
return pub.params.PublicKeySize
|
||
|
}
|
||
|
|
||
|
// Exports currently stored key. In case structure hasn't been filled with key data
|
||
|
// returned byte string is filled with zeros.
|
||
|
func (prv *PrivateKey) Export() []byte {
|
||
|
ret := make([]byte, len(prv.Scalar)+len(prv.S))
|
||
|
copy(ret, prv.S)
|
||
|
copy(ret[len(prv.S):], prv.Scalar)
|
||
|
return ret
|
||
|
}
|
||
|
|
||
|
// Size returns size of the private key in bytes
|
||
|
func (prv *PrivateKey) Size() int {
|
||
|
tmp := len(prv.Scalar)
|
||
|
if prv.keyVariant == KeyVariant_SIKE {
|
||
|
tmp += int(prv.params.MsgLen)
|
||
|
}
|
||
|
return tmp
|
||
|
}
|
||
|
|
||
|
// Import clears content of the private key currently stored in the structure
|
||
|
// and imports key from octet string. In case of SIKE, the random value 'S'
|
||
|
// must be prepended to the value of actual private key (see SIKE spec for details).
|
||
|
// Function doesn't import public key value to PrivateKey object.
|
||
|
func (prv *PrivateKey) Import(input []byte) error {
|
||
|
if len(input) != prv.Size() {
|
||
|
return errors.New("sidh: input to short")
|
||
|
}
|
||
|
copy(prv.S, input[:len(prv.S)])
|
||
|
copy(prv.Scalar, input[len(prv.S):])
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Generates random private key for SIDH or SIKE. Generated value is
|
||
|
// formed as little-endian integer from key-space <2^(e2-1)..2^e2 - 1>
|
||
|
// for KeyVariant_A or <2^(s-1)..2^s - 1>, where s = floor(log_2(3^e3)),
|
||
|
// for KeyVariant_B.
|
||
|
//
|
||
|
// Returns error in case user provided RNG fails.
|
||
|
func (prv *PrivateKey) Generate(rand io.Reader) error {
|
||
|
var err error
|
||
|
var dp *DomainParams
|
||
|
|
||
|
if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
|
||
|
dp = &prv.params.A
|
||
|
} else {
|
||
|
dp = &prv.params.B
|
||
|
}
|
||
|
|
||
|
if prv.keyVariant == KeyVariant_SIKE {
|
||
|
_, err = io.ReadFull(rand, prv.S)
|
||
|
}
|
||
|
|
||
|
// Private key generation takes advantage of the fact that keyspace for secret
|
||
|
// key is (0, 2^x - 1), for some possitivite value of 'x' (see SIKE, 1.3.8).
|
||
|
// It means that all bytes in the secret key, but the last one, can take any
|
||
|
// value between <0x00,0xFF>. Similarily for the last byte, but generation
|
||
|
// needs to chop off some bits, to make sure generated value is an element of
|
||
|
// a key-space.
|
||
|
_, err = io.ReadFull(rand, prv.Scalar)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
prv.Scalar[len(prv.Scalar)-1] &= (1 << (dp.SecretBitLen % 8)) - 1
|
||
|
// Make sure scalar is SecretBitLen long. SIKE spec says that key
|
||
|
// space starts from 0, but I'm not confortable with having low
|
||
|
// value scalars used for private keys. It is still secrure as per
|
||
|
// table 5.1 in [SIKE].
|
||
|
prv.Scalar[len(prv.Scalar)-1] |= 1 << ((dp.SecretBitLen % 8) - 1)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Generates public key.
|
||
|
//
|
||
|
// Constant time.
|
||
|
func (prv *PrivateKey) GeneratePublicKey() *PublicKey {
|
||
|
if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
|
||
|
return publicKeyGenA(prv)
|
||
|
}
|
||
|
return publicKeyGenB(prv)
|
||
|
}
|
||
|
|
||
|
// Computes a shared secret which is a j-invariant. Function requires that pub has
|
||
|
// different KeyVariant than prv. Length of returned output is 2*ceil(log_2 P)/8),
|
||
|
// where P is a prime defining finite field.
|
||
|
//
|
||
|
// It's important to notice that each keypair must not be used more than once
|
||
|
// to calculate shared secret.
|
||
|
//
|
||
|
// Function may return error. This happens only in case provided input is invalid.
|
||
|
// Constant time for properly initialized private and public key.
|
||
|
func DeriveSecret(prv *PrivateKey, pub *PublicKey) ([]byte, error) {
|
||
|
|
||
|
if (pub == nil) || (prv == nil) {
|
||
|
return nil, errors.New("sidh: invalid arguments")
|
||
|
}
|
||
|
|
||
|
if (pub.keyVariant == prv.keyVariant) || (pub.params.Id != prv.params.Id) {
|
||
|
return nil, errors.New("sidh: public and private are incompatbile")
|
||
|
}
|
||
|
|
||
|
if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
|
||
|
return deriveSecretA(prv, pub), nil
|
||
|
} else {
|
||
|
return deriveSecretB(prv, pub), nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Uses SIKE public key to encrypt plaintext. Requires cryptographically secure PRNG
|
||
|
// Returns ciphertext in case encryption succeeds. Returns error in case PRNG fails
|
||
|
// or wrongly formatted input was provided.
|
||
|
func Encrypt(rng io.Reader, pub *PublicKey, ptext []byte) ([]byte, error) {
|
||
|
var ptextLen = len(ptext)
|
||
|
// c1 must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
|
||
|
if ptextLen != pub.params.KemSize {
|
||
|
return nil, errors.New("Unsupported message length")
|
||
|
}
|
||
|
|
||
|
skA := NewPrivateKey(KeyVariant_SIDH_A)
|
||
|
err := skA.Generate(rng)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
pkA := skA.GeneratePublicKey()
|
||
|
return encrypt(skA, pkA, pub, ptext)
|
||
|
}
|
||
|
|
||
|
// Uses SIKE private key to decrypt ciphertext. Returns plaintext in case
|
||
|
// decryption succeeds or error in case unexptected input was provided.
|
||
|
// Constant time
|
||
|
func Decrypt(prv *PrivateKey, ctext []byte) ([]byte, error) {
|
||
|
var c1_len int
|
||
|
n := make([]byte, prv.params.KemSize)
|
||
|
pk_len := prv.params.PublicKeySize
|
||
|
|
||
|
if prv.keyVariant != KeyVariant_SIKE {
|
||
|
return nil, errors.New("wrong key type")
|
||
|
}
|
||
|
|
||
|
// ctext is a concatenation of (pubkey_A || c1=ciphertext)
|
||
|
// it must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
|
||
|
c1_len = len(ctext) - pk_len
|
||
|
if c1_len != int(prv.params.KemSize) {
|
||
|
return nil, errors.New("wrong size of cipher text")
|
||
|
}
|
||
|
|
||
|
c0 := NewPublicKey(KeyVariant_SIDH_A)
|
||
|
err := c0.Import(ctext[:pk_len])
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
j, err := DeriveSecret(prv, c0)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
digest := sha256.Sum256(j)
|
||
|
copy(n, digest[:])
|
||
|
|
||
|
for i, _ := range n {
|
||
|
n[i] ^= ctext[pk_len+i]
|
||
|
}
|
||
|
return n[:c1_len], nil
|
||
|
}
|
||
|
|
||
|
// Encapsulation receives the public key and generates SIKE ciphertext and shared secret.
|
||
|
// The generated ciphertext is used for authentication.
|
||
|
// The rng must be cryptographically secure PRNG.
|
||
|
// Error is returned in case PRNG fails or wrongly formatted input was provided.
|
||
|
func Encapsulate(rng io.Reader, pub *PublicKey) (ctext []byte, secret []byte, err error) {
|
||
|
// Buffer for random, secret message
|
||
|
ptext := make([]byte, pub.params.MsgLen)
|
||
|
// SHA256 hash context object
|
||
|
d := sha256.New()
|
||
|
|
||
|
// Generate ephemeral value
|
||
|
_, err = io.ReadFull(rng, ptext)
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
// Implementation uses first 28-bytes of secret
|
||
|
d.Write(ptext)
|
||
|
d.Write(pub.Export())
|
||
|
digest := d.Sum(nil)
|
||
|
// r = G(ptext||pub)
|
||
|
r := digest[:pub.params.A.SecretByteLen]
|
||
|
|
||
|
// (c0 || c1) = Enc(pkA, ptext; r)
|
||
|
skA := NewPrivateKey(KeyVariant_SIDH_A)
|
||
|
err = skA.Import(r)
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
pkA := skA.GeneratePublicKey()
|
||
|
ctext, err = encrypt(skA, pkA, pub, ptext)
|
||
|
if err != nil {
|
||
|
return nil, nil, err
|
||
|
}
|
||
|
|
||
|
// K = H(ptext||(c0||c1))
|
||
|
d.Reset()
|
||
|
d.Write(ptext)
|
||
|
d.Write(ctext)
|
||
|
digest = d.Sum(digest[:0])
|
||
|
return ctext, digest[:pub.params.KemSize], nil
|
||
|
}
|
||
|
|
||
|
// Decapsulate given the keypair and ciphertext as inputs, Decapsulate outputs a shared
|
||
|
// secret if plaintext verifies correctly, otherwise function outputs random value.
|
||
|
// Decapsulation may fail in case input is wrongly formatted.
|
||
|
// Constant time for properly initialized input.
|
||
|
func Decapsulate(prv *PrivateKey, pub *PublicKey, ctext []byte) ([]byte, error) {
|
||
|
var skA = NewPrivateKey(KeyVariant_SIDH_A)
|
||
|
// SHA256 hash context object
|
||
|
d := sha256.New()
|
||
|
|
||
|
m, err := Decrypt(prv, ctext)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// r' = G(m'||pub)
|
||
|
d.Write(m)
|
||
|
d.Write(pub.Export())
|
||
|
digest := d.Sum(nil)
|
||
|
// Never fails
|
||
|
skA.Import(digest[:pub.params.A.SecretByteLen])
|
||
|
|
||
|
// Never fails
|
||
|
pkA := skA.GeneratePublicKey()
|
||
|
c0 := pkA.Export()
|
||
|
|
||
|
d.Reset()
|
||
|
if subtle.ConstantTimeCompare(c0, ctext[:len(c0)]) == 1 {
|
||
|
d.Write(m)
|
||
|
} else {
|
||
|
// S is chosen at random when generating a key and is unknown to the other party. It
|
||
|
// may seem weird, but it's correct. It is important that S is unpredictable
|
||
|
// to other party. Without this check, it is possible to recover a secret, by
|
||
|
// providing series of invalid ciphertexts. It is also important that in case
|
||
|
//
|
||
|
// See more details in "On the security of supersingular isogeny cryptosystems"
|
||
|
// (S. Galbraith, et al., 2016, ePrint #859).
|
||
|
d.Write(prv.S)
|
||
|
}
|
||
|
d.Write(ctext)
|
||
|
digest = d.Sum(digest[:0])
|
||
|
return digest[:pub.params.KemSize], nil
|
||
|
}
|