Nagram/TMessagesProj/jni/third_party/usrsctplib/netinet/sctp_sha1.c

348 lines
10 KiB
C
Raw Normal View History

2020-08-14 16:58:22 +00:00
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
* Copyright (c) 2008-2013, by Michael Tuexen. All rights reserved.
* Copyright (c) 2013, by Lally Singh. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* c) Neither the name of Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <netinet/sctp_sha1.h>
#if defined(SCTP_USE_NSS_SHA1)
/* A SHA-1 Digest is 160 bits, or 20 bytes */
#define SHA_DIGEST_LENGTH (20)
void
sctp_sha1_init(struct sctp_sha1_context *ctx)
{
ctx->pk11_ctx = PK11_CreateDigestContext(SEC_OID_SHA1);
PK11_DigestBegin(ctx->pk11_ctx);
}
void
sctp_sha1_update(struct sctp_sha1_context *ctx, const unsigned char *ptr, unsigned int siz)
{
PK11_DigestOp(ctx->pk11_ctx, ptr, siz);
}
void
sctp_sha1_final(unsigned char *digest, struct sctp_sha1_context *ctx)
{
unsigned int output_len = 0;
PK11_DigestFinal(ctx->pk11_ctx, digest, &output_len, SHA_DIGEST_LENGTH);
PK11_DestroyContext(ctx->pk11_ctx, PR_TRUE);
}
#elif defined(SCTP_USE_OPENSSL_SHA1)
void
sctp_sha1_init(struct sctp_sha1_context *ctx)
{
SHA1_Init(&ctx->sha_ctx);
}
void
sctp_sha1_update(struct sctp_sha1_context *ctx, const unsigned char *ptr, unsigned int siz)
{
SHA1_Update(&ctx->sha_ctx, ptr, (unsigned long)siz);
}
void
sctp_sha1_final(unsigned char *digest, struct sctp_sha1_context *ctx)
{
SHA1_Final(digest, &ctx->sha_ctx);
}
2022-03-11 16:49:54 +00:00
#elif defined(SCTP_USE_MBEDTLS_SHA1)
void
sctp_sha1_init(struct sctp_sha1_context *ctx)
{
mbedtls_sha1_init(&ctx->sha1_ctx);
mbedtls_sha1_starts_ret(&ctx->sha1_ctx);
}
2020-08-14 16:58:22 +00:00
2022-03-11 16:49:54 +00:00
void
sctp_sha1_update(struct sctp_sha1_context *ctx, const unsigned char *ptr, unsigned int siz)
{
mbedtls_sha1_update_ret(&ctx->sha1_ctx, ptr, siz);
}
void
sctp_sha1_final(unsigned char *digest, struct sctp_sha1_context *ctx)
{
mbedtls_sha1_finish_ret(&ctx->sha1_ctx, digest);
}
2020-08-14 16:58:22 +00:00
#else
#include <string.h>
2022-03-11 16:49:54 +00:00
#if defined(_WIN32) && defined(__Userspace__)
2020-08-14 16:58:22 +00:00
#include <winsock2.h>
2022-03-11 16:49:54 +00:00
#elif !(defined(_WIN32) && !defined(__Userspace__))
2020-08-14 16:58:22 +00:00
#include <arpa/inet.h>
#endif
#define F1(B,C,D) (((B & C) | ((~B) & D))) /* 0 <= t <= 19 */
#define F2(B,C,D) (B ^ C ^ D) /* 20 <= t <= 39 */
#define F3(B,C,D) ((B & C) | (B & D) | (C & D)) /* 40 <= t <= 59 */
#define F4(B,C,D) (B ^ C ^ D) /* 600 <= t <= 79 */
/* circular shift */
#define CSHIFT(A,B) ((B << A) | (B >> (32-A)))
#define K1 0x5a827999 /* 0 <= t <= 19 */
#define K2 0x6ed9eba1 /* 20 <= t <= 39 */
#define K3 0x8f1bbcdc /* 40 <= t <= 59 */
#define K4 0xca62c1d6 /* 60 <= t <= 79 */
#define H0INIT 0x67452301
#define H1INIT 0xefcdab89
#define H2INIT 0x98badcfe
#define H3INIT 0x10325476
#define H4INIT 0xc3d2e1f0
void
sctp_sha1_init(struct sctp_sha1_context *ctx)
{
/* Init the SHA-1 context structure */
ctx->A = 0;
ctx->B = 0;
ctx->C = 0;
ctx->D = 0;
ctx->E = 0;
ctx->H0 = H0INIT;
ctx->H1 = H1INIT;
ctx->H2 = H2INIT;
ctx->H3 = H3INIT;
ctx->H4 = H4INIT;
ctx->TEMP = 0;
memset(ctx->words, 0, sizeof(ctx->words));
ctx->how_many_in_block = 0;
ctx->running_total = 0;
}
static void
sctp_sha1_process_a_block(struct sctp_sha1_context *ctx, unsigned int *block)
{
int i;
/* init the W0-W15 to the block of words being hashed. */
/* step a) */
for (i = 0; i < 16; i++) {
ctx->words[i] = ntohl(block[i]);
}
/* now init the rest based on the SHA-1 formula, step b) */
for (i = 16; i < 80; i++) {
ctx->words[i] = CSHIFT(1, ((ctx->words[(i - 3)]) ^
(ctx->words[(i - 8)]) ^
(ctx->words[(i - 14)]) ^
(ctx->words[(i - 16)])));
}
/* step c) */
ctx->A = ctx->H0;
ctx->B = ctx->H1;
ctx->C = ctx->H2;
ctx->D = ctx->H3;
ctx->E = ctx->H4;
/* step d) */
for (i = 0; i < 80; i++) {
if (i < 20) {
ctx->TEMP = ((CSHIFT(5, ctx->A)) +
(F1(ctx->B, ctx->C, ctx->D)) +
(ctx->E) +
ctx->words[i] +
K1);
} else if (i < 40) {
ctx->TEMP = ((CSHIFT(5, ctx->A)) +
(F2(ctx->B, ctx->C, ctx->D)) +
(ctx->E) +
(ctx->words[i]) +
K2);
} else if (i < 60) {
ctx->TEMP = ((CSHIFT(5, ctx->A)) +
(F3(ctx->B, ctx->C, ctx->D)) +
(ctx->E) +
(ctx->words[i]) +
K3);
} else {
ctx->TEMP = ((CSHIFT(5, ctx->A)) +
(F4(ctx->B, ctx->C, ctx->D)) +
(ctx->E) +
(ctx->words[i]) +
K4);
}
ctx->E = ctx->D;
ctx->D = ctx->C;
ctx->C = CSHIFT(30, ctx->B);
ctx->B = ctx->A;
ctx->A = ctx->TEMP;
}
/* step e) */
ctx->H0 = (ctx->H0) + (ctx->A);
ctx->H1 = (ctx->H1) + (ctx->B);
ctx->H2 = (ctx->H2) + (ctx->C);
ctx->H3 = (ctx->H3) + (ctx->D);
ctx->H4 = (ctx->H4) + (ctx->E);
}
void
sctp_sha1_update(struct sctp_sha1_context *ctx, const unsigned char *ptr, unsigned int siz)
{
unsigned int number_left, left_to_fill;
number_left = siz;
while (number_left > 0) {
left_to_fill = sizeof(ctx->sha_block) - ctx->how_many_in_block;
if (left_to_fill > number_left) {
/* can only partially fill up this one */
memcpy(&ctx->sha_block[ctx->how_many_in_block],
ptr, number_left);
ctx->how_many_in_block += number_left;
ctx->running_total += number_left;
break;
} else {
/* block is now full, process it */
memcpy(&ctx->sha_block[ctx->how_many_in_block],
ptr, left_to_fill);
sctp_sha1_process_a_block(ctx,
(unsigned int *)ctx->sha_block);
number_left -= left_to_fill;
ctx->running_total += left_to_fill;
ctx->how_many_in_block = 0;
ptr = (const unsigned char *)(ptr + left_to_fill);
}
}
}
void
sctp_sha1_final(unsigned char *digest, struct sctp_sha1_context *ctx)
{
/*
* if any left in block fill with padding and process. Then transfer
* the digest to the pointer. At the last block some special rules
* need to apply. We must add a 1 bit following the message, then we
* pad with 0's. The total size is encoded as a 64 bit number at the
* end. Now if the last buffer has more than 55 octets in it we
* cannot fit the 64 bit number + 10000000 pad on the end and must
* add the 10000000 pad, pad the rest of the message with 0's and
* then create an all 0 message with just the 64 bit size at the end
* and run this block through by itself. Also the 64 bit int must
* be in network byte order.
*/
int left_to_fill;
unsigned int i, *ptr;
if (ctx->how_many_in_block > 55) {
/*
* special case, we need to process two blocks here. One for
* the current stuff plus possibly the pad. The other for
* the size.
*/
left_to_fill = sizeof(ctx->sha_block) - ctx->how_many_in_block;
if (left_to_fill == 0) {
/* Should not really happen but I am paranoid */
sctp_sha1_process_a_block(ctx,
(unsigned int *)ctx->sha_block);
/* init last block, a bit different than the rest */
ctx->sha_block[0] = '\x80';
for (i = 1; i < sizeof(ctx->sha_block); i++) {
ctx->sha_block[i] = 0x0;
}
} else if (left_to_fill == 1) {
ctx->sha_block[ctx->how_many_in_block] = '\x80';
sctp_sha1_process_a_block(ctx,
(unsigned int *)ctx->sha_block);
/* init last block */
memset(ctx->sha_block, 0, sizeof(ctx->sha_block));
} else {
ctx->sha_block[ctx->how_many_in_block] = '\x80';
for (i = (ctx->how_many_in_block + 1);
i < sizeof(ctx->sha_block);
i++) {
ctx->sha_block[i] = 0x0;
}
sctp_sha1_process_a_block(ctx,
(unsigned int *)ctx->sha_block);
/* init last block */
memset(ctx->sha_block, 0, sizeof(ctx->sha_block));
}
/* This is in bits so multiply by 8 */
ctx->running_total *= 8;
ptr = (unsigned int *)&ctx->sha_block[60];
*ptr = htonl(ctx->running_total);
sctp_sha1_process_a_block(ctx, (unsigned int *)ctx->sha_block);
} else {
/*
* easy case, we just pad this message to size - end with 0
* add the magic 0x80 to the next word and then put the
* network byte order size in the last spot and process the
* block.
*/
ctx->sha_block[ctx->how_many_in_block] = '\x80';
for (i = (ctx->how_many_in_block + 1);
i < sizeof(ctx->sha_block);
i++) {
ctx->sha_block[i] = 0x0;
}
/* get last int spot */
ctx->running_total *= 8;
ptr = (unsigned int *)&ctx->sha_block[60];
*ptr = htonl(ctx->running_total);
sctp_sha1_process_a_block(ctx, (unsigned int *)ctx->sha_block);
}
/* transfer the digest back to the user */
digest[3] = (ctx->H0 & 0xff);
digest[2] = ((ctx->H0 >> 8) & 0xff);
digest[1] = ((ctx->H0 >> 16) & 0xff);
digest[0] = ((ctx->H0 >> 24) & 0xff);
digest[7] = (ctx->H1 & 0xff);
digest[6] = ((ctx->H1 >> 8) & 0xff);
digest[5] = ((ctx->H1 >> 16) & 0xff);
digest[4] = ((ctx->H1 >> 24) & 0xff);
digest[11] = (ctx->H2 & 0xff);
digest[10] = ((ctx->H2 >> 8) & 0xff);
digest[9] = ((ctx->H2 >> 16) & 0xff);
digest[8] = ((ctx->H2 >> 24) & 0xff);
digest[15] = (ctx->H3 & 0xff);
digest[14] = ((ctx->H3 >> 8) & 0xff);
digest[13] = ((ctx->H3 >> 16) & 0xff);
digest[12] = ((ctx->H3 >> 24) & 0xff);
digest[19] = (ctx->H4 & 0xff);
digest[18] = ((ctx->H4 >> 8) & 0xff);
digest[17] = ((ctx->H4 >> 16) & 0xff);
digest[16] = ((ctx->H4 >> 24) & 0xff);
}
#endif