448 lines
15 KiB
C
448 lines
15 KiB
C
|
/* ====================================================================
|
||
|
* Copyright (c) 2008 The OpenSSL Project. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
*
|
||
|
* 3. All advertising materials mentioning features or use of this
|
||
|
* software must display the following acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||
|
*
|
||
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
|
* endorse or promote products derived from this software without
|
||
|
* prior written permission. For written permission, please contact
|
||
|
* openssl-core@openssl.org.
|
||
|
*
|
||
|
* 5. Products derived from this software may not be called "OpenSSL"
|
||
|
* nor may "OpenSSL" appear in their names without prior written
|
||
|
* permission of the OpenSSL Project.
|
||
|
*
|
||
|
* 6. Redistributions of any form whatsoever must retain the following
|
||
|
* acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
* ==================================================================== */
|
||
|
|
||
|
#include <openssl/aead.h>
|
||
|
|
||
|
#include <assert.h>
|
||
|
|
||
|
#include <openssl/cpu.h>
|
||
|
#include <openssl/cipher.h>
|
||
|
#include <openssl/err.h>
|
||
|
#include <openssl/mem.h>
|
||
|
|
||
|
#include "../fipsmodule/cipher/internal.h"
|
||
|
|
||
|
|
||
|
struct ccm128_context {
|
||
|
block128_f block;
|
||
|
ctr128_f ctr;
|
||
|
unsigned M, L;
|
||
|
};
|
||
|
|
||
|
struct ccm128_state {
|
||
|
union {
|
||
|
uint64_t u[2];
|
||
|
uint8_t c[16];
|
||
|
} nonce, cmac;
|
||
|
};
|
||
|
|
||
|
static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key,
|
||
|
block128_f block, ctr128_f ctr, unsigned M,
|
||
|
unsigned L) {
|
||
|
if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) {
|
||
|
return 0;
|
||
|
}
|
||
|
ctx->block = block;
|
||
|
ctx->ctr = ctr;
|
||
|
ctx->M = M;
|
||
|
ctx->L = L;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) {
|
||
|
return ctx->L >= sizeof(size_t) ? (size_t)-1
|
||
|
: (((size_t)1) << (ctx->L * 8)) - 1;
|
||
|
}
|
||
|
|
||
|
static int ccm128_init_state(const struct ccm128_context *ctx,
|
||
|
struct ccm128_state *state, const AES_KEY *key,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *aad, size_t aad_len,
|
||
|
size_t plaintext_len) {
|
||
|
const block128_f block = ctx->block;
|
||
|
const unsigned M = ctx->M;
|
||
|
const unsigned L = ctx->L;
|
||
|
|
||
|
// |L| determines the expected |nonce_len| and the limit for |plaintext_len|.
|
||
|
if (plaintext_len > CRYPTO_ccm128_max_input(ctx) ||
|
||
|
nonce_len != 15 - L) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Assemble the first block for computing the MAC.
|
||
|
OPENSSL_memset(state, 0, sizeof(*state));
|
||
|
state->nonce.c[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3);
|
||
|
if (aad_len != 0) {
|
||
|
state->nonce.c[0] |= 0x40; // Set AAD Flag
|
||
|
}
|
||
|
OPENSSL_memcpy(&state->nonce.c[1], nonce, nonce_len);
|
||
|
for (unsigned i = 0; i < L; i++) {
|
||
|
state->nonce.c[15 - i] = (uint8_t)(plaintext_len >> (8 * i));
|
||
|
}
|
||
|
|
||
|
(*block)(state->nonce.c, state->cmac.c, key);
|
||
|
size_t blocks = 1;
|
||
|
|
||
|
if (aad_len != 0) {
|
||
|
unsigned i;
|
||
|
// Cast to u64 to avoid the compiler complaining about invalid shifts.
|
||
|
uint64_t aad_len_u64 = aad_len;
|
||
|
if (aad_len_u64 < 0x10000 - 0x100) {
|
||
|
state->cmac.c[0] ^= (uint8_t)(aad_len_u64 >> 8);
|
||
|
state->cmac.c[1] ^= (uint8_t)aad_len_u64;
|
||
|
i = 2;
|
||
|
} else if (aad_len_u64 <= 0xffffffff) {
|
||
|
state->cmac.c[0] ^= 0xff;
|
||
|
state->cmac.c[1] ^= 0xfe;
|
||
|
state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 24);
|
||
|
state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 16);
|
||
|
state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 8);
|
||
|
state->cmac.c[5] ^= (uint8_t)aad_len_u64;
|
||
|
i = 6;
|
||
|
} else {
|
||
|
state->cmac.c[0] ^= 0xff;
|
||
|
state->cmac.c[1] ^= 0xff;
|
||
|
state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 56);
|
||
|
state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 48);
|
||
|
state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 40);
|
||
|
state->cmac.c[5] ^= (uint8_t)(aad_len_u64 >> 32);
|
||
|
state->cmac.c[6] ^= (uint8_t)(aad_len_u64 >> 24);
|
||
|
state->cmac.c[7] ^= (uint8_t)(aad_len_u64 >> 16);
|
||
|
state->cmac.c[8] ^= (uint8_t)(aad_len_u64 >> 8);
|
||
|
state->cmac.c[9] ^= (uint8_t)aad_len_u64;
|
||
|
i = 10;
|
||
|
}
|
||
|
|
||
|
do {
|
||
|
for (; i < 16 && aad_len != 0; i++) {
|
||
|
state->cmac.c[i] ^= *aad;
|
||
|
aad++;
|
||
|
aad_len--;
|
||
|
}
|
||
|
(*block)(state->cmac.c, state->cmac.c, key);
|
||
|
blocks++;
|
||
|
i = 0;
|
||
|
} while (aad_len != 0);
|
||
|
}
|
||
|
|
||
|
// Per RFC 3610, section 2.6, the total number of block cipher operations done
|
||
|
// must not exceed 2^61. There are two block cipher operations remaining per
|
||
|
// message block, plus one block at the end to encrypt the MAC.
|
||
|
size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1;
|
||
|
if (plaintext_len + 15 < plaintext_len ||
|
||
|
remaining_blocks + blocks < blocks ||
|
||
|
(uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Assemble the first block for encrypting and decrypting. The bottom |L|
|
||
|
// bytes are replaced with a counter and all bit the encoding of |L| is
|
||
|
// cleared in the first byte.
|
||
|
state->nonce.c[0] &= 7;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int ccm128_encrypt(const struct ccm128_context *ctx,
|
||
|
struct ccm128_state *state, const AES_KEY *key,
|
||
|
uint8_t *out, const uint8_t *in, size_t len) {
|
||
|
// The counter for encryption begins at one.
|
||
|
for (unsigned i = 0; i < ctx->L; i++) {
|
||
|
state->nonce.c[15 - i] = 0;
|
||
|
}
|
||
|
state->nonce.c[15] = 1;
|
||
|
|
||
|
uint8_t partial_buf[16];
|
||
|
unsigned num = 0;
|
||
|
if (ctx->ctr != NULL) {
|
||
|
CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce.c, partial_buf,
|
||
|
&num, ctx->ctr);
|
||
|
} else {
|
||
|
CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce.c, partial_buf, &num,
|
||
|
ctx->block);
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int ccm128_compute_mac(const struct ccm128_context *ctx,
|
||
|
struct ccm128_state *state, const AES_KEY *key,
|
||
|
uint8_t *out_tag, size_t tag_len,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
block128_f block = ctx->block;
|
||
|
if (tag_len != ctx->M) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Incorporate |in| into the MAC.
|
||
|
union {
|
||
|
uint64_t u[2];
|
||
|
uint8_t c[16];
|
||
|
} tmp;
|
||
|
while (len >= 16) {
|
||
|
OPENSSL_memcpy(tmp.c, in, 16);
|
||
|
state->cmac.u[0] ^= tmp.u[0];
|
||
|
state->cmac.u[1] ^= tmp.u[1];
|
||
|
(*block)(state->cmac.c, state->cmac.c, key);
|
||
|
in += 16;
|
||
|
len -= 16;
|
||
|
}
|
||
|
if (len > 0) {
|
||
|
for (size_t i = 0; i < len; i++) {
|
||
|
state->cmac.c[i] ^= in[i];
|
||
|
}
|
||
|
(*block)(state->cmac.c, state->cmac.c, key);
|
||
|
}
|
||
|
|
||
|
// Encrypt the MAC with counter zero.
|
||
|
for (unsigned i = 0; i < ctx->L; i++) {
|
||
|
state->nonce.c[15 - i] = 0;
|
||
|
}
|
||
|
(*block)(state->nonce.c, tmp.c, key);
|
||
|
state->cmac.u[0] ^= tmp.u[0];
|
||
|
state->cmac.u[1] ^= tmp.u[1];
|
||
|
|
||
|
OPENSSL_memcpy(out_tag, state->cmac.c, tag_len);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx,
|
||
|
const AES_KEY *key, uint8_t *out,
|
||
|
uint8_t *out_tag, size_t tag_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t len,
|
||
|
const uint8_t *aad, size_t aad_len) {
|
||
|
struct ccm128_state state;
|
||
|
return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
|
||
|
len) &&
|
||
|
ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) &&
|
||
|
ccm128_encrypt(ctx, &state, key, out, in, len);
|
||
|
}
|
||
|
|
||
|
static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx,
|
||
|
const AES_KEY *key, uint8_t *out,
|
||
|
uint8_t *out_tag, size_t tag_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t len,
|
||
|
const uint8_t *aad, size_t aad_len) {
|
||
|
struct ccm128_state state;
|
||
|
return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
|
||
|
len) &&
|
||
|
ccm128_encrypt(ctx, &state, key, out, in, len) &&
|
||
|
ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len);
|
||
|
}
|
||
|
|
||
|
#define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16
|
||
|
|
||
|
struct aead_aes_ccm_ctx {
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks;
|
||
|
struct ccm128_context ccm;
|
||
|
};
|
||
|
|
||
|
OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
|
||
|
sizeof(struct aead_aes_ccm_ctx),
|
||
|
"AEAD state is too small");
|
||
|
#if defined(__GNUC__) || defined(__clang__)
|
||
|
OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >=
|
||
|
alignof(struct aead_aes_ccm_ctx),
|
||
|
"AEAD state has insufficient alignment");
|
||
|
#endif
|
||
|
|
||
|
static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
||
|
size_t key_len, size_t tag_len, unsigned M,
|
||
|
unsigned L) {
|
||
|
assert(M == EVP_AEAD_max_overhead(ctx->aead));
|
||
|
assert(M == EVP_AEAD_max_tag_len(ctx->aead));
|
||
|
assert(15 - L == EVP_AEAD_nonce_length(ctx->aead));
|
||
|
|
||
|
if (key_len != EVP_AEAD_key_length(ctx->aead)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
||
|
return 0; // EVP_AEAD_CTX_init should catch this.
|
||
|
}
|
||
|
|
||
|
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
|
||
|
tag_len = M;
|
||
|
}
|
||
|
|
||
|
if (tag_len != M) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state;
|
||
|
|
||
|
block128_f block;
|
||
|
ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len);
|
||
|
ctx->tag_len = tag_len;
|
||
|
if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {}
|
||
|
|
||
|
static int aead_aes_ccm_seal_scatter(
|
||
|
const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
|
||
|
size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
|
||
|
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
|
||
|
size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
|
||
|
const struct aead_aes_ccm_ctx *ccm_ctx =
|
||
|
(struct aead_aes_ccm_ctx *)&ctx->state;
|
||
|
|
||
|
if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (max_out_tag_len < ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag,
|
||
|
ctx->tag_len, nonce, nonce_len, in, in_len, ad,
|
||
|
ad_len)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
*out_tag_len = ctx->tag_len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *in_tag, size_t in_tag_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
const struct aead_aes_ccm_ctx *ccm_ctx =
|
||
|
(struct aead_aes_ccm_ctx *)&ctx->state;
|
||
|
|
||
|
if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (in_tag_len != ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN];
|
||
|
assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN);
|
||
|
if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag,
|
||
|
ctx->tag_len, nonce, nonce_len, in, in_len, ad,
|
||
|
ad_len)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
||
|
size_t key_len, size_t tag_len) {
|
||
|
return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2);
|
||
|
}
|
||
|
|
||
|
static const EVP_AEAD aead_aes_128_ccm_bluetooth = {
|
||
|
16, // key length (AES-128)
|
||
|
13, // nonce length
|
||
|
4, // overhead
|
||
|
4, // max tag length
|
||
|
0, // seal_scatter_supports_extra_in
|
||
|
|
||
|
aead_aes_ccm_bluetooth_init,
|
||
|
NULL /* init_with_direction */,
|
||
|
aead_aes_ccm_cleanup,
|
||
|
NULL /* open */,
|
||
|
aead_aes_ccm_seal_scatter,
|
||
|
aead_aes_ccm_open_gather,
|
||
|
NULL /* get_iv */,
|
||
|
NULL /* tag_len */,
|
||
|
};
|
||
|
|
||
|
const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void) {
|
||
|
return &aead_aes_128_ccm_bluetooth;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
||
|
size_t key_len, size_t tag_len) {
|
||
|
return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2);
|
||
|
}
|
||
|
|
||
|
static const EVP_AEAD aead_aes_128_ccm_bluetooth_8 = {
|
||
|
16, // key length (AES-128)
|
||
|
13, // nonce length
|
||
|
8, // overhead
|
||
|
8, // max tag length
|
||
|
0, // seal_scatter_supports_extra_in
|
||
|
|
||
|
aead_aes_ccm_bluetooth_8_init,
|
||
|
NULL /* init_with_direction */,
|
||
|
aead_aes_ccm_cleanup,
|
||
|
NULL /* open */,
|
||
|
aead_aes_ccm_seal_scatter,
|
||
|
aead_aes_ccm_open_gather,
|
||
|
NULL /* get_iv */,
|
||
|
NULL /* tag_len */,
|
||
|
};
|
||
|
|
||
|
const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void) {
|
||
|
return &aead_aes_128_ccm_bluetooth_8;
|
||
|
}
|