1438 lines
41 KiB
C
1438 lines
41 KiB
C
|
/* ====================================================================
|
||
|
* Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
*
|
||
|
* 3. All advertising materials mentioning features or use of this
|
||
|
* software must display the following acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||
|
*
|
||
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
|
* endorse or promote products derived from this software without
|
||
|
* prior written permission. For written permission, please contact
|
||
|
* openssl-core@openssl.org.
|
||
|
*
|
||
|
* 5. Products derived from this software may not be called "OpenSSL"
|
||
|
* nor may "OpenSSL" appear in their names without prior written
|
||
|
* permission of the OpenSSL Project.
|
||
|
*
|
||
|
* 6. Redistributions of any form whatsoever must retain the following
|
||
|
* acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
* ==================================================================== */
|
||
|
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <openssl/aead.h>
|
||
|
#include <openssl/aes.h>
|
||
|
#include <openssl/cipher.h>
|
||
|
#include <openssl/cpu.h>
|
||
|
#include <openssl/err.h>
|
||
|
#include <openssl/mem.h>
|
||
|
#include <openssl/nid.h>
|
||
|
#include <openssl/rand.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
#include "../../internal.h"
|
||
|
#include "../aes/internal.h"
|
||
|
#include "../modes/internal.h"
|
||
|
#include "../delocate.h"
|
||
|
|
||
|
#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
|
||
|
#include <openssl/arm_arch.h>
|
||
|
#endif
|
||
|
|
||
|
|
||
|
OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) // Unreachable code.
|
||
|
|
||
|
typedef struct {
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks;
|
||
|
block128_f block;
|
||
|
union {
|
||
|
cbc128_f cbc;
|
||
|
ctr128_f ctr;
|
||
|
} stream;
|
||
|
} EVP_AES_KEY;
|
||
|
|
||
|
typedef struct {
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks; // AES key schedule to use
|
||
|
int key_set; // Set if key initialised
|
||
|
int iv_set; // Set if an iv is set
|
||
|
GCM128_CONTEXT gcm;
|
||
|
uint8_t *iv; // Temporary IV store
|
||
|
int ivlen; // IV length
|
||
|
int taglen;
|
||
|
int iv_gen; // It is OK to generate IVs
|
||
|
ctr128_f ctr;
|
||
|
} EVP_AES_GCM_CTX;
|
||
|
|
||
|
#if !defined(OPENSSL_NO_ASM) && \
|
||
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
||
|
#define VPAES
|
||
|
static char vpaes_capable(void) {
|
||
|
return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0;
|
||
|
}
|
||
|
|
||
|
#if defined(OPENSSL_X86_64)
|
||
|
#define BSAES
|
||
|
static char bsaes_capable(void) {
|
||
|
return vpaes_capable();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#elif !defined(OPENSSL_NO_ASM) && \
|
||
|
(defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
|
||
|
|
||
|
#if defined(OPENSSL_ARM) && __ARM_MAX_ARCH__ >= 7
|
||
|
#define BSAES
|
||
|
static char bsaes_capable(void) {
|
||
|
return CRYPTO_is_NEON_capable();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#if defined(BSAES)
|
||
|
// On platforms where BSAES gets defined (just above), then these functions are
|
||
|
// provided by asm.
|
||
|
void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t ivec[16], int enc);
|
||
|
void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
|
||
|
const AES_KEY *key, const uint8_t ivec[16]);
|
||
|
#else
|
||
|
static char bsaes_capable(void) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// On other platforms, bsaes_capable() will always return false and so the
|
||
|
// following will never be called.
|
||
|
static void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t ivec[16], int enc) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
static void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
|
||
|
size_t len, const AES_KEY *key,
|
||
|
const uint8_t ivec[16]) {
|
||
|
abort();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(VPAES)
|
||
|
// On platforms where VPAES gets defined (just above), then these functions are
|
||
|
// provided by asm.
|
||
|
int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
||
|
int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
||
|
|
||
|
void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
|
||
|
void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t *ivec, int enc);
|
||
|
#else
|
||
|
static char vpaes_capable(void) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// On other platforms, vpaes_capable() will always return false and so the
|
||
|
// following will never be called.
|
||
|
static int vpaes_set_encrypt_key(const uint8_t *userKey, int bits,
|
||
|
AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
static int vpaes_set_decrypt_key(const uint8_t *userKey, int bits,
|
||
|
AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
static void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
static void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
static void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t *ivec, int enc) {
|
||
|
abort();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if !defined(OPENSSL_NO_ASM) && \
|
||
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
||
|
int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
||
|
int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
|
||
|
|
||
|
void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
|
||
|
|
||
|
void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, int enc);
|
||
|
void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const AES_KEY *key, uint8_t *ivec, int enc);
|
||
|
|
||
|
#else
|
||
|
|
||
|
// On other platforms, aesni_capable() will always return false and so the
|
||
|
// following will never be called.
|
||
|
static void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
static int aesni_set_encrypt_key(const uint8_t *userKey, int bits,
|
||
|
AES_KEY *key) {
|
||
|
abort();
|
||
|
}
|
||
|
static void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
|
||
|
size_t blocks, const void *key,
|
||
|
const uint8_t *ivec) {
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc) {
|
||
|
int ret, mode;
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
|
||
|
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
|
||
|
if (hwaes_capable()) {
|
||
|
ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)aes_hw_decrypt;
|
||
|
dat->stream.cbc = NULL;
|
||
|
if (mode == EVP_CIPH_CBC_MODE) {
|
||
|
dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt;
|
||
|
}
|
||
|
} else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) {
|
||
|
ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)AES_decrypt;
|
||
|
dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
|
||
|
} else if (vpaes_capable()) {
|
||
|
ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)vpaes_decrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
|
||
|
} else {
|
||
|
ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)AES_decrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
|
||
|
}
|
||
|
} else if (hwaes_capable()) {
|
||
|
ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)aes_hw_encrypt;
|
||
|
dat->stream.cbc = NULL;
|
||
|
if (mode == EVP_CIPH_CBC_MODE) {
|
||
|
dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt;
|
||
|
} else if (mode == EVP_CIPH_CTR_MODE) {
|
||
|
dat->stream.ctr = (ctr128_f)aes_hw_ctr32_encrypt_blocks;
|
||
|
}
|
||
|
} else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) {
|
||
|
ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)AES_encrypt;
|
||
|
dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
|
||
|
} else if (vpaes_capable()) {
|
||
|
ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)vpaes_encrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
|
||
|
} else {
|
||
|
ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
|
||
|
dat->block = (block128_f)AES_encrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
|
||
|
}
|
||
|
|
||
|
if (ret < 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
if (dat->stream.cbc) {
|
||
|
(*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt);
|
||
|
} else if (ctx->encrypt) {
|
||
|
CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
|
||
|
} else {
|
||
|
CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
size_t bl = ctx->cipher->block_size;
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
if (len < bl) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
len -= bl;
|
||
|
for (size_t i = 0; i <= len; i += bl) {
|
||
|
(*dat->block)(in + i, out + i, &dat->ks);
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
if (dat->stream.ctr) {
|
||
|
CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf,
|
||
|
&ctx->num, dat->stream.ctr);
|
||
|
} else {
|
||
|
CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &ctx->num,
|
||
|
dat->block);
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static char aesni_capable(void);
|
||
|
|
||
|
ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
|
||
|
block128_f *out_block, const uint8_t *key,
|
||
|
size_t key_bytes) {
|
||
|
if (aesni_capable()) {
|
||
|
aesni_set_encrypt_key(key, key_bytes * 8, aes_key);
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aesni_encrypt, 1);
|
||
|
}
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) aesni_encrypt;
|
||
|
}
|
||
|
return (ctr128_f)aesni_ctr32_encrypt_blocks;
|
||
|
}
|
||
|
|
||
|
if (hwaes_capable()) {
|
||
|
aes_hw_set_encrypt_key(key, key_bytes * 8, aes_key);
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aes_hw_encrypt, 0);
|
||
|
}
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) aes_hw_encrypt;
|
||
|
}
|
||
|
return (ctr128_f)aes_hw_ctr32_encrypt_blocks;
|
||
|
}
|
||
|
|
||
|
if (bsaes_capable()) {
|
||
|
AES_set_encrypt_key(key, key_bytes * 8, aes_key);
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt, 0);
|
||
|
}
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) AES_encrypt;
|
||
|
}
|
||
|
return (ctr128_f)bsaes_ctr32_encrypt_blocks;
|
||
|
}
|
||
|
|
||
|
if (vpaes_capable()) {
|
||
|
vpaes_set_encrypt_key(key, key_bytes * 8, aes_key);
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) vpaes_encrypt;
|
||
|
}
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt, 0);
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
AES_set_encrypt_key(key, key_bytes * 8, aes_key);
|
||
|
if (gcm_ctx != NULL) {
|
||
|
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt, 0);
|
||
|
}
|
||
|
if (out_block) {
|
||
|
*out_block = (block128_f) AES_encrypt;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc) {
|
||
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
||
|
if (!iv && !key) {
|
||
|
return 1;
|
||
|
}
|
||
|
if (key) {
|
||
|
gctx->ctr =
|
||
|
aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm, NULL, key, ctx->key_len);
|
||
|
// If we have an iv can set it directly, otherwise use saved IV.
|
||
|
if (iv == NULL && gctx->iv_set) {
|
||
|
iv = gctx->iv;
|
||
|
}
|
||
|
if (iv) {
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
|
||
|
gctx->iv_set = 1;
|
||
|
}
|
||
|
gctx->key_set = 1;
|
||
|
} else {
|
||
|
// If key set use IV, otherwise copy
|
||
|
if (gctx->key_set) {
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
|
||
|
} else {
|
||
|
OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen);
|
||
|
}
|
||
|
gctx->iv_set = 1;
|
||
|
gctx->iv_gen = 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) {
|
||
|
EVP_AES_GCM_CTX *gctx = c->cipher_data;
|
||
|
OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
|
||
|
if (gctx->iv != c->iv) {
|
||
|
OPENSSL_free(gctx->iv);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// increment counter (64-bit int) by 1
|
||
|
static void ctr64_inc(uint8_t *counter) {
|
||
|
int n = 8;
|
||
|
uint8_t c;
|
||
|
|
||
|
do {
|
||
|
--n;
|
||
|
c = counter[n];
|
||
|
++c;
|
||
|
counter[n] = c;
|
||
|
if (c) {
|
||
|
return;
|
||
|
}
|
||
|
} while (n);
|
||
|
}
|
||
|
|
||
|
static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) {
|
||
|
EVP_AES_GCM_CTX *gctx = c->cipher_data;
|
||
|
switch (type) {
|
||
|
case EVP_CTRL_INIT:
|
||
|
gctx->key_set = 0;
|
||
|
gctx->iv_set = 0;
|
||
|
gctx->ivlen = c->cipher->iv_len;
|
||
|
gctx->iv = c->iv;
|
||
|
gctx->taglen = -1;
|
||
|
gctx->iv_gen = 0;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_SET_IVLEN:
|
||
|
if (arg <= 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Allocate memory for IV if needed
|
||
|
if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) {
|
||
|
if (gctx->iv != c->iv) {
|
||
|
OPENSSL_free(gctx->iv);
|
||
|
}
|
||
|
gctx->iv = OPENSSL_malloc(arg);
|
||
|
if (!gctx->iv) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
gctx->ivlen = arg;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_SET_TAG:
|
||
|
if (arg <= 0 || arg > 16 || c->encrypt) {
|
||
|
return 0;
|
||
|
}
|
||
|
OPENSSL_memcpy(c->buf, ptr, arg);
|
||
|
gctx->taglen = arg;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_GET_TAG:
|
||
|
if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
OPENSSL_memcpy(ptr, c->buf, arg);
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_SET_IV_FIXED:
|
||
|
// Special case: -1 length restores whole IV
|
||
|
if (arg == -1) {
|
||
|
OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen);
|
||
|
gctx->iv_gen = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
// Fixed field must be at least 4 bytes and invocation field
|
||
|
// at least 8.
|
||
|
if (arg < 4 || (gctx->ivlen - arg) < 8) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (arg) {
|
||
|
OPENSSL_memcpy(gctx->iv, ptr, arg);
|
||
|
}
|
||
|
if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) {
|
||
|
return 0;
|
||
|
}
|
||
|
gctx->iv_gen = 1;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_IV_GEN:
|
||
|
if (gctx->iv_gen == 0 || gctx->key_set == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
|
||
|
if (arg <= 0 || arg > gctx->ivlen) {
|
||
|
arg = gctx->ivlen;
|
||
|
}
|
||
|
OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
||
|
// Invocation field will be at least 8 bytes in size and
|
||
|
// so no need to check wrap around or increment more than
|
||
|
// last 8 bytes.
|
||
|
ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
||
|
gctx->iv_set = 1;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_GCM_SET_IV_INV:
|
||
|
if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) {
|
||
|
return 0;
|
||
|
}
|
||
|
OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
|
||
|
gctx->iv_set = 1;
|
||
|
return 1;
|
||
|
|
||
|
case EVP_CTRL_COPY: {
|
||
|
EVP_CIPHER_CTX *out = ptr;
|
||
|
EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
|
||
|
if (gctx->iv == c->iv) {
|
||
|
gctx_out->iv = out->iv;
|
||
|
} else {
|
||
|
gctx_out->iv = OPENSSL_malloc(gctx->ivlen);
|
||
|
if (!gctx_out->iv) {
|
||
|
return 0;
|
||
|
}
|
||
|
OPENSSL_memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
||
|
|
||
|
// If not set up, return error
|
||
|
if (!gctx->key_set) {
|
||
|
return -1;
|
||
|
}
|
||
|
if (!gctx->iv_set) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (in) {
|
||
|
if (out == NULL) {
|
||
|
if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) {
|
||
|
return -1;
|
||
|
}
|
||
|
} else if (ctx->encrypt) {
|
||
|
if (gctx->ctr) {
|
||
|
if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
|
||
|
gctx->ctr)) {
|
||
|
return -1;
|
||
|
}
|
||
|
} else {
|
||
|
if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (gctx->ctr) {
|
||
|
if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
|
||
|
gctx->ctr)) {
|
||
|
return -1;
|
||
|
}
|
||
|
} else {
|
||
|
if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return len;
|
||
|
} else {
|
||
|
if (!ctx->encrypt) {
|
||
|
if (gctx->taglen < 0 ||
|
||
|
!CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) {
|
||
|
return -1;
|
||
|
}
|
||
|
gctx->iv_set = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
|
||
|
gctx->taglen = 16;
|
||
|
// Don't reuse the IV
|
||
|
gctx->iv_set = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_cbc_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_cbc;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 16;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CBC_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_cbc_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ctr_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_ctr;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 16;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CTR_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_ctr_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_ecb;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_ECB_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_ecb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ofb_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_ofb128;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 16;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_OFB_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_ofb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_gcm_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_gcm;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 16;
|
||
|
out->iv_len = 12;
|
||
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
||
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
||
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
||
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
||
|
out->init = aes_gcm_init_key;
|
||
|
out->cipher = aes_gcm_cipher;
|
||
|
out->cleanup = aes_gcm_cleanup;
|
||
|
out->ctrl = aes_gcm_ctrl;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_cbc_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_192_cbc;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 24;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CBC_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_cbc_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ctr_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_192_ctr;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 24;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CTR_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_ctr_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_192_ecb;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 24;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_ECB_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_ecb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_gcm_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_192_gcm;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 24;
|
||
|
out->iv_len = 12;
|
||
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
||
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
||
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
||
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
||
|
out->init = aes_gcm_init_key;
|
||
|
out->cipher = aes_gcm_cipher;
|
||
|
out->cleanup = aes_gcm_cleanup;
|
||
|
out->ctrl = aes_gcm_ctrl;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_cbc_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_cbc;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 32;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CBC_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_cbc_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ctr_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_ctr;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 32;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CTR_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_ctr_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_ecb;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 32;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_ECB_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_ecb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ofb_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_ofb128;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 32;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_OFB_MODE;
|
||
|
out->init = aes_init_key;
|
||
|
out->cipher = aes_ofb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_gcm_generic) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_gcm;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 32;
|
||
|
out->iv_len = 12;
|
||
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
||
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
||
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
||
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
||
|
out->init = aes_gcm_init_key;
|
||
|
out->cipher = aes_gcm_cipher;
|
||
|
out->cleanup = aes_gcm_cleanup;
|
||
|
out->ctrl = aes_gcm_ctrl;
|
||
|
}
|
||
|
|
||
|
#if !defined(OPENSSL_NO_ASM) && \
|
||
|
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
|
||
|
|
||
|
// AES-NI section.
|
||
|
|
||
|
static char aesni_capable(void) {
|
||
|
return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0;
|
||
|
}
|
||
|
|
||
|
static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc) {
|
||
|
int ret, mode;
|
||
|
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
|
||
|
|
||
|
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
|
||
|
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
|
||
|
ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
|
||
|
dat->block = (block128_f)aesni_decrypt;
|
||
|
dat->stream.cbc =
|
||
|
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL;
|
||
|
} else {
|
||
|
ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
|
||
|
dat->block = (block128_f)aesni_encrypt;
|
||
|
if (mode == EVP_CIPH_CBC_MODE) {
|
||
|
dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
|
||
|
} else if (mode == EVP_CIPH_CTR_MODE) {
|
||
|
dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
|
||
|
} else {
|
||
|
dat->stream.cbc = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ret < 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
size_t bl = ctx->cipher->block_size;
|
||
|
|
||
|
if (len < bl) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc) {
|
||
|
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
|
||
|
if (!iv && !key) {
|
||
|
return 1;
|
||
|
}
|
||
|
if (key) {
|
||
|
aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
||
|
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt, 1);
|
||
|
gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
|
||
|
// If we have an iv can set it directly, otherwise use
|
||
|
// saved IV.
|
||
|
if (iv == NULL && gctx->iv_set) {
|
||
|
iv = gctx->iv;
|
||
|
}
|
||
|
if (iv) {
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
|
||
|
gctx->iv_set = 1;
|
||
|
}
|
||
|
gctx->key_set = 1;
|
||
|
} else {
|
||
|
// If key set use IV, otherwise copy
|
||
|
if (gctx->key_set) {
|
||
|
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
|
||
|
} else {
|
||
|
OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen);
|
||
|
}
|
||
|
gctx->iv_set = 1;
|
||
|
gctx->iv_gen = 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_cbc) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_cbc;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 16;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CBC_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aesni_cbc_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_ctr) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_ctr;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 16;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CTR_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aes_ctr_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_ecb) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_ecb;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_ECB_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aesni_ecb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_ofb) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_ofb128;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 16;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_OFB_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aes_ofb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_128_gcm) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_128_gcm;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 16;
|
||
|
out->iv_len = 12;
|
||
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
||
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
||
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
||
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
||
|
out->init = aesni_gcm_init_key;
|
||
|
out->cipher = aes_gcm_cipher;
|
||
|
out->cleanup = aes_gcm_cleanup;
|
||
|
out->ctrl = aes_gcm_ctrl;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_192_cbc) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_192_cbc;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 24;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CBC_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aesni_cbc_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_192_ctr) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_192_ctr;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 24;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CTR_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aes_ctr_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_192_ecb) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_192_ecb;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 24;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_ECB_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aesni_ecb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_192_gcm) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_192_gcm;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 24;
|
||
|
out->iv_len = 12;
|
||
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
||
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
||
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
||
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
|
||
|
out->init = aesni_gcm_init_key;
|
||
|
out->cipher = aes_gcm_cipher;
|
||
|
out->cleanup = aes_gcm_cleanup;
|
||
|
out->ctrl = aes_gcm_ctrl;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_cbc) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_cbc;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 32;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CBC_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aesni_cbc_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_ctr) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_ctr;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 32;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_CTR_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aes_ctr_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_ecb) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_ecb;
|
||
|
out->block_size = 16;
|
||
|
out->key_len = 32;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_ECB_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aesni_ecb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_ofb) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_ofb128;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 32;
|
||
|
out->iv_len = 16;
|
||
|
out->ctx_size = sizeof(EVP_AES_KEY);
|
||
|
out->flags = EVP_CIPH_OFB_MODE;
|
||
|
out->init = aesni_init_key;
|
||
|
out->cipher = aes_ofb_cipher;
|
||
|
}
|
||
|
|
||
|
DEFINE_LOCAL_DATA(EVP_CIPHER, aesni_256_gcm) {
|
||
|
memset(out, 0, sizeof(EVP_CIPHER));
|
||
|
|
||
|
out->nid = NID_aes_256_gcm;
|
||
|
out->block_size = 1;
|
||
|
out->key_len = 32;
|
||
|
out->iv_len = 12;
|
||
|
out->ctx_size = sizeof(EVP_AES_GCM_CTX);
|
||
|
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV |
|
||
|
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
|
||
|
EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY |
|
||
|
EVP_CIPH_FLAG_AEAD_CIPHER;
|
||
|
out->init = aesni_gcm_init_key;
|
||
|
out->cipher = aes_gcm_cipher;
|
||
|
out->cleanup = aes_gcm_cleanup;
|
||
|
out->ctrl = aes_gcm_ctrl;
|
||
|
}
|
||
|
|
||
|
#define EVP_CIPHER_FUNCTION(keybits, mode) \
|
||
|
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
|
||
|
if (aesni_capable()) { \
|
||
|
return aesni_##keybits##_##mode(); \
|
||
|
} else { \
|
||
|
return aes_##keybits##_##mode##_generic(); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#else // ^^^ OPENSSL_X86_64 || OPENSSL_X86
|
||
|
|
||
|
static char aesni_capable(void) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define EVP_CIPHER_FUNCTION(keybits, mode) \
|
||
|
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
|
||
|
return aes_##keybits##_##mode##_generic(); \
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
EVP_CIPHER_FUNCTION(128, cbc)
|
||
|
EVP_CIPHER_FUNCTION(128, ctr)
|
||
|
EVP_CIPHER_FUNCTION(128, ecb)
|
||
|
EVP_CIPHER_FUNCTION(128, ofb)
|
||
|
EVP_CIPHER_FUNCTION(128, gcm)
|
||
|
|
||
|
EVP_CIPHER_FUNCTION(192, cbc)
|
||
|
EVP_CIPHER_FUNCTION(192, ctr)
|
||
|
EVP_CIPHER_FUNCTION(192, ecb)
|
||
|
EVP_CIPHER_FUNCTION(192, gcm)
|
||
|
|
||
|
EVP_CIPHER_FUNCTION(256, cbc)
|
||
|
EVP_CIPHER_FUNCTION(256, ctr)
|
||
|
EVP_CIPHER_FUNCTION(256, ecb)
|
||
|
EVP_CIPHER_FUNCTION(256, ofb)
|
||
|
EVP_CIPHER_FUNCTION(256, gcm)
|
||
|
|
||
|
|
||
|
#define EVP_AEAD_AES_GCM_TAG_LEN 16
|
||
|
|
||
|
struct aead_aes_gcm_ctx {
|
||
|
union {
|
||
|
double align;
|
||
|
AES_KEY ks;
|
||
|
} ks;
|
||
|
GCM128_CONTEXT gcm;
|
||
|
ctr128_f ctr;
|
||
|
};
|
||
|
|
||
|
struct aead_aes_gcm_tls12_ctx {
|
||
|
struct aead_aes_gcm_ctx gcm_ctx;
|
||
|
uint64_t counter;
|
||
|
};
|
||
|
|
||
|
static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx,
|
||
|
size_t *out_tag_len, const uint8_t *key,
|
||
|
size_t key_len, size_t tag_len) {
|
||
|
const size_t key_bits = key_len * 8;
|
||
|
|
||
|
if (key_bits != 128 && key_bits != 256) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
||
|
return 0; // EVP_AEAD_CTX_init should catch this.
|
||
|
}
|
||
|
|
||
|
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
|
||
|
tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
}
|
||
|
|
||
|
if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
gcm_ctx->ctr =
|
||
|
aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, NULL, key, key_len);
|
||
|
*out_tag_len = tag_len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
||
|
size_t key_len, size_t requested_tag_len) {
|
||
|
struct aead_aes_gcm_ctx *gcm_ctx;
|
||
|
gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx));
|
||
|
if (gcm_ctx == NULL) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
size_t actual_tag_len;
|
||
|
if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len,
|
||
|
requested_tag_len)) {
|
||
|
OPENSSL_free(gcm_ctx);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ctx->aead_state = gcm_ctx;
|
||
|
ctx->tag_len = actual_tag_len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {
|
||
|
OPENSSL_free(ctx->aead_state);
|
||
|
}
|
||
|
|
||
|
static int aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
uint8_t *out_tag, size_t *out_tag_len,
|
||
|
size_t max_out_tag_len,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *extra_in,
|
||
|
size_t extra_in_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
|
||
|
GCM128_CONTEXT gcm;
|
||
|
|
||
|
if (extra_in_len + ctx->tag_len < ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
||
|
return 0;
|
||
|
}
|
||
|
if (max_out_tag_len < extra_in_len + ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
if (nonce_len == 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
const AES_KEY *key = &gcm_ctx->ks.ks;
|
||
|
|
||
|
OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
|
||
|
CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
|
||
|
|
||
|
if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (gcm_ctx->ctr) {
|
||
|
if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len,
|
||
|
gcm_ctx->ctr)) {
|
||
|
return 0;
|
||
|
}
|
||
|
} else {
|
||
|
if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (extra_in_len) {
|
||
|
if (gcm_ctx->ctr) {
|
||
|
if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, extra_in, out_tag,
|
||
|
extra_in_len, gcm_ctx->ctr)) {
|
||
|
return 0;
|
||
|
}
|
||
|
} else {
|
||
|
if (!CRYPTO_gcm128_encrypt(&gcm, key, extra_in, out_tag, extra_in_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CRYPTO_gcm128_tag(&gcm, out_tag + extra_in_len, ctx->tag_len);
|
||
|
*out_tag_len = ctx->tag_len + extra_in_len;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||
|
const uint8_t *nonce, size_t nonce_len,
|
||
|
const uint8_t *in, size_t in_len,
|
||
|
const uint8_t *in_tag, size_t in_tag_len,
|
||
|
const uint8_t *ad, size_t ad_len) {
|
||
|
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
|
||
|
uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN];
|
||
|
GCM128_CONTEXT gcm;
|
||
|
|
||
|
if (nonce_len == 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (in_tag_len != ctx->tag_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
const AES_KEY *key = &gcm_ctx->ks.ks;
|
||
|
|
||
|
OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
|
||
|
CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
|
||
|
|
||
|
if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (gcm_ctx->ctr) {
|
||
|
if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len,
|
||
|
gcm_ctx->ctr)) {
|
||
|
return 0;
|
||
|
}
|
||
|
} else {
|
||
|
if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CRYPTO_gcm128_tag(&gcm, tag, ctx->tag_len);
|
||
|
if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) {
|
||
|
memset(out, 0, sizeof(EVP_AEAD));
|
||
|
|
||
|
out->key_len = 16;
|
||
|
out->nonce_len = 12;
|
||
|
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
out->seal_scatter_supports_extra_in = 1;
|
||
|
|
||
|
out->init = aead_aes_gcm_init;
|
||
|
out->cleanup = aead_aes_gcm_cleanup;
|
||
|
out->seal_scatter = aead_aes_gcm_seal_scatter;
|
||
|
out->open_gather = aead_aes_gcm_open_gather;
|
||
|
}
|
||
|
|
||
|
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) {
|
||
|
memset(out, 0, sizeof(EVP_AEAD));
|
||
|
|
||
|
out->key_len = 32;
|
||
|
out->nonce_len = 12;
|
||
|
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
out->seal_scatter_supports_extra_in = 1;
|
||
|
|
||
|
out->init = aead_aes_gcm_init;
|
||
|
out->cleanup = aead_aes_gcm_cleanup;
|
||
|
out->seal_scatter = aead_aes_gcm_seal_scatter;
|
||
|
out->open_gather = aead_aes_gcm_open_gather;
|
||
|
}
|
||
|
|
||
|
static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
||
|
size_t key_len, size_t requested_tag_len) {
|
||
|
struct aead_aes_gcm_tls12_ctx *gcm_ctx;
|
||
|
gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_tls12_ctx));
|
||
|
if (gcm_ctx == NULL) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
gcm_ctx->counter = 0;
|
||
|
|
||
|
size_t actual_tag_len;
|
||
|
if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len,
|
||
|
requested_tag_len)) {
|
||
|
OPENSSL_free(gcm_ctx);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ctx->aead_state = gcm_ctx;
|
||
|
ctx->tag_len = actual_tag_len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void aead_aes_gcm_tls12_cleanup(EVP_AEAD_CTX *ctx) {
|
||
|
OPENSSL_free(ctx->aead_state);
|
||
|
}
|
||
|
|
||
|
static int aead_aes_gcm_tls12_seal_scatter(
|
||
|
const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
|
||
|
size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
|
||
|
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
|
||
|
size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
|
||
|
struct aead_aes_gcm_tls12_ctx *gcm_ctx = ctx->aead_state;
|
||
|
if (gcm_ctx->counter == UINT64_MAX) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (nonce_len != 12) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
const uint64_t be_counter = CRYPTO_bswap8(gcm_ctx->counter);
|
||
|
if (OPENSSL_memcmp((uint8_t *)&be_counter, nonce + nonce_len - 8, 8) != 0) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
gcm_ctx->counter++;
|
||
|
|
||
|
return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len,
|
||
|
max_out_tag_len, nonce, nonce_len, in,
|
||
|
in_len, extra_in, extra_in_len, ad, ad_len);
|
||
|
}
|
||
|
|
||
|
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) {
|
||
|
memset(out, 0, sizeof(EVP_AEAD));
|
||
|
|
||
|
out->key_len = 16;
|
||
|
out->nonce_len = 12;
|
||
|
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
out->seal_scatter_supports_extra_in = 1;
|
||
|
|
||
|
out->init = aead_aes_gcm_tls12_init;
|
||
|
out->cleanup = aead_aes_gcm_tls12_cleanup;
|
||
|
out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
|
||
|
out->open_gather = aead_aes_gcm_open_gather;
|
||
|
}
|
||
|
|
||
|
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) {
|
||
|
memset(out, 0, sizeof(EVP_AEAD));
|
||
|
|
||
|
out->key_len = 32;
|
||
|
out->nonce_len = 12;
|
||
|
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
|
||
|
out->seal_scatter_supports_extra_in = 1;
|
||
|
|
||
|
out->init = aead_aes_gcm_tls12_init;
|
||
|
out->cleanup = aead_aes_gcm_tls12_cleanup;
|
||
|
out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
|
||
|
out->open_gather = aead_aes_gcm_open_gather;
|
||
|
}
|
||
|
|
||
|
int EVP_has_aes_hardware(void) {
|
||
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
|
||
|
return aesni_capable() && crypto_gcm_clmul_enabled();
|
||
|
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
|
||
|
return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable();
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|