1101 lines
33 KiB
C
1101 lines
33 KiB
C
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|||
|
* All rights reserved.
|
|||
|
*
|
|||
|
* This package is an SSL implementation written
|
|||
|
* by Eric Young (eay@cryptsoft.com).
|
|||
|
* The implementation was written so as to conform with Netscapes SSL.
|
|||
|
*
|
|||
|
* This library is free for commercial and non-commercial use as long as
|
|||
|
* the following conditions are aheared to. The following conditions
|
|||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|||
|
* included with this distribution is covered by the same copyright terms
|
|||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|||
|
*
|
|||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|||
|
* the code are not to be removed.
|
|||
|
* If this package is used in a product, Eric Young should be given attribution
|
|||
|
* as the author of the parts of the library used.
|
|||
|
* This can be in the form of a textual message at program startup or
|
|||
|
* in documentation (online or textual) provided with the package.
|
|||
|
*
|
|||
|
* Redistribution and use in source and binary forms, with or without
|
|||
|
* modification, are permitted provided that the following conditions
|
|||
|
* are met:
|
|||
|
* 1. Redistributions of source code must retain the copyright
|
|||
|
* notice, this list of conditions and the following disclaimer.
|
|||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|||
|
* notice, this list of conditions and the following disclaimer in the
|
|||
|
* documentation and/or other materials provided with the distribution.
|
|||
|
* 3. All advertising materials mentioning features or use of this software
|
|||
|
* must display the following acknowledgement:
|
|||
|
* "This product includes cryptographic software written by
|
|||
|
* Eric Young (eay@cryptsoft.com)"
|
|||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|||
|
* being used are not cryptographic related :-).
|
|||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|||
|
* the apps directory (application code) you must include an acknowledgement:
|
|||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|||
|
*
|
|||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|||
|
* SUCH DAMAGE.
|
|||
|
*
|
|||
|
* The licence and distribution terms for any publically available version or
|
|||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|||
|
* copied and put under another distribution licence
|
|||
|
* [including the GNU Public Licence.] */
|
|||
|
|
|||
|
#include <openssl/rsa.h>
|
|||
|
|
|||
|
#include <assert.h>
|
|||
|
#include <limits.h>
|
|||
|
#include <string.h>
|
|||
|
|
|||
|
#include <openssl/bn.h>
|
|||
|
#include <openssl/err.h>
|
|||
|
#include <openssl/mem.h>
|
|||
|
#include <openssl/thread.h>
|
|||
|
#include <openssl/type_check.h>
|
|||
|
|
|||
|
#include "internal.h"
|
|||
|
#include "../bn/internal.h"
|
|||
|
#include "../../internal.h"
|
|||
|
#include "../delocate.h"
|
|||
|
|
|||
|
|
|||
|
static int check_modulus_and_exponent_sizes(const RSA *rsa) {
|
|||
|
unsigned rsa_bits = BN_num_bits(rsa->n);
|
|||
|
|
|||
|
if (rsa_bits > 16 * 1024) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
// Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as
|
|||
|
// the limit based on the recommendations in [1] and [2]. Windows CryptoAPI
|
|||
|
// doesn't support values larger than 32 bits [3], so it is unlikely that
|
|||
|
// exponents larger than 32 bits are being used for anything Windows commonly
|
|||
|
// does.
|
|||
|
//
|
|||
|
// [1] https://www.imperialviolet.org/2012/03/16/rsae.html
|
|||
|
// [2] https://www.imperialviolet.org/2012/03/17/rsados.html
|
|||
|
// [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
|
|||
|
static const unsigned kMaxExponentBits = 33;
|
|||
|
|
|||
|
if (BN_num_bits(rsa->e) > kMaxExponentBits) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
// Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small
|
|||
|
// shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits|
|
|||
|
// is much smaller than the minimum RSA key size that any application should
|
|||
|
// accept.
|
|||
|
if (rsa_bits <= kMaxExponentBits) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
assert(BN_ucmp(rsa->n, rsa->e) > 0);
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
size_t rsa_default_size(const RSA *rsa) {
|
|||
|
return BN_num_bytes(rsa->n);
|
|||
|
}
|
|||
|
|
|||
|
int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|||
|
const uint8_t *in, size_t in_len, int padding) {
|
|||
|
if (rsa->n == NULL || rsa->e == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
const unsigned rsa_size = RSA_size(rsa);
|
|||
|
BIGNUM *f, *result;
|
|||
|
uint8_t *buf = NULL;
|
|||
|
BN_CTX *ctx = NULL;
|
|||
|
int i, ret = 0;
|
|||
|
|
|||
|
if (max_out < rsa_size) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
if (!check_modulus_and_exponent_sizes(rsa)) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
ctx = BN_CTX_new();
|
|||
|
if (ctx == NULL) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
BN_CTX_start(ctx);
|
|||
|
f = BN_CTX_get(ctx);
|
|||
|
result = BN_CTX_get(ctx);
|
|||
|
buf = OPENSSL_malloc(rsa_size);
|
|||
|
if (!f || !result || !buf) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
switch (padding) {
|
|||
|
case RSA_PKCS1_PADDING:
|
|||
|
i = RSA_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len);
|
|||
|
break;
|
|||
|
case RSA_PKCS1_OAEP_PADDING:
|
|||
|
// Use the default parameters: SHA-1 for both hashes and no label.
|
|||
|
i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len,
|
|||
|
NULL, 0, NULL, NULL);
|
|||
|
break;
|
|||
|
case RSA_NO_PADDING:
|
|||
|
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
|
|||
|
break;
|
|||
|
default:
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (i <= 0) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (BN_bin2bn(buf, rsa_size, f) == NULL) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (BN_ucmp(f, rsa->n) >= 0) {
|
|||
|
// usually the padding functions would catch this
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
|
|||
|
!BN_mod_exp_mont(result, f, rsa->e, rsa->n, ctx, rsa->mont_n)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// put in leading 0 bytes if the number is less than the length of the
|
|||
|
// modulus
|
|||
|
if (!BN_bn2bin_padded(out, rsa_size, result)) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
*out_len = rsa_size;
|
|||
|
ret = 1;
|
|||
|
|
|||
|
err:
|
|||
|
if (ctx != NULL) {
|
|||
|
BN_CTX_end(ctx);
|
|||
|
BN_CTX_free(ctx);
|
|||
|
}
|
|||
|
OPENSSL_free(buf);
|
|||
|
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
// MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per
|
|||
|
// RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and
|
|||
|
// destroyed as needed.
|
|||
|
#define MAX_BLINDINGS_PER_RSA 1024
|
|||
|
|
|||
|
// rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by
|
|||
|
// allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If
|
|||
|
// none are free, the cache will be extended by a extra element and the new
|
|||
|
// BN_BLINDING is returned.
|
|||
|
//
|
|||
|
// On success, the index of the assigned BN_BLINDING is written to
|
|||
|
// |*index_used| and must be passed to |rsa_blinding_release| when finished.
|
|||
|
static BN_BLINDING *rsa_blinding_get(RSA *rsa, unsigned *index_used,
|
|||
|
BN_CTX *ctx) {
|
|||
|
assert(ctx != NULL);
|
|||
|
assert(rsa->mont_n != NULL);
|
|||
|
|
|||
|
BN_BLINDING *ret = NULL;
|
|||
|
BN_BLINDING **new_blindings;
|
|||
|
uint8_t *new_blindings_inuse;
|
|||
|
char overflow = 0;
|
|||
|
|
|||
|
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
|||
|
|
|||
|
unsigned i;
|
|||
|
for (i = 0; i < rsa->num_blindings; i++) {
|
|||
|
if (rsa->blindings_inuse[i] == 0) {
|
|||
|
rsa->blindings_inuse[i] = 1;
|
|||
|
ret = rsa->blindings[i];
|
|||
|
*index_used = i;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (ret != NULL) {
|
|||
|
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
overflow = rsa->num_blindings >= MAX_BLINDINGS_PER_RSA;
|
|||
|
|
|||
|
// We didn't find a free BN_BLINDING to use so increase the length of
|
|||
|
// the arrays by one and use the newly created element.
|
|||
|
|
|||
|
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
|||
|
ret = BN_BLINDING_new();
|
|||
|
if (ret == NULL) {
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
if (overflow) {
|
|||
|
// We cannot add any more cached BN_BLINDINGs so we use |ret|
|
|||
|
// and mark it for destruction in |rsa_blinding_release|.
|
|||
|
*index_used = MAX_BLINDINGS_PER_RSA;
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
|||
|
|
|||
|
new_blindings =
|
|||
|
OPENSSL_malloc(sizeof(BN_BLINDING *) * (rsa->num_blindings + 1));
|
|||
|
if (new_blindings == NULL) {
|
|||
|
goto err1;
|
|||
|
}
|
|||
|
OPENSSL_memcpy(new_blindings, rsa->blindings,
|
|||
|
sizeof(BN_BLINDING *) * rsa->num_blindings);
|
|||
|
new_blindings[rsa->num_blindings] = ret;
|
|||
|
|
|||
|
new_blindings_inuse = OPENSSL_malloc(rsa->num_blindings + 1);
|
|||
|
if (new_blindings_inuse == NULL) {
|
|||
|
goto err2;
|
|||
|
}
|
|||
|
OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings);
|
|||
|
new_blindings_inuse[rsa->num_blindings] = 1;
|
|||
|
*index_used = rsa->num_blindings;
|
|||
|
|
|||
|
OPENSSL_free(rsa->blindings);
|
|||
|
rsa->blindings = new_blindings;
|
|||
|
OPENSSL_free(rsa->blindings_inuse);
|
|||
|
rsa->blindings_inuse = new_blindings_inuse;
|
|||
|
rsa->num_blindings++;
|
|||
|
|
|||
|
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
|||
|
return ret;
|
|||
|
|
|||
|
err2:
|
|||
|
OPENSSL_free(new_blindings);
|
|||
|
|
|||
|
err1:
|
|||
|
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
|||
|
BN_BLINDING_free(ret);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
// rsa_blinding_release marks the cached BN_BLINDING at the given index as free
|
|||
|
// for other threads to use.
|
|||
|
static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding,
|
|||
|
unsigned blinding_index) {
|
|||
|
if (blinding_index == MAX_BLINDINGS_PER_RSA) {
|
|||
|
// This blinding wasn't cached.
|
|||
|
BN_BLINDING_free(blinding);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
|||
|
rsa->blindings_inuse[blinding_index] = 0;
|
|||
|
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
|||
|
}
|
|||
|
|
|||
|
// signing
|
|||
|
int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out,
|
|||
|
size_t max_out, const uint8_t *in, size_t in_len,
|
|||
|
int padding) {
|
|||
|
const unsigned rsa_size = RSA_size(rsa);
|
|||
|
uint8_t *buf = NULL;
|
|||
|
int i, ret = 0;
|
|||
|
|
|||
|
if (max_out < rsa_size) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
buf = OPENSSL_malloc(rsa_size);
|
|||
|
if (buf == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
switch (padding) {
|
|||
|
case RSA_PKCS1_PADDING:
|
|||
|
i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len);
|
|||
|
break;
|
|||
|
case RSA_NO_PADDING:
|
|||
|
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
|
|||
|
break;
|
|||
|
default:
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (i <= 0) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!RSA_private_transform(rsa, out, buf, rsa_size)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
*out_len = rsa_size;
|
|||
|
ret = 1;
|
|||
|
|
|||
|
err:
|
|||
|
OPENSSL_free(buf);
|
|||
|
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|||
|
const uint8_t *in, size_t in_len, int padding) {
|
|||
|
const unsigned rsa_size = RSA_size(rsa);
|
|||
|
uint8_t *buf = NULL;
|
|||
|
int ret = 0;
|
|||
|
|
|||
|
if (max_out < rsa_size) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
if (padding == RSA_NO_PADDING) {
|
|||
|
buf = out;
|
|||
|
} else {
|
|||
|
// Allocate a temporary buffer to hold the padded plaintext.
|
|||
|
buf = OPENSSL_malloc(rsa_size);
|
|||
|
if (buf == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (in_len != rsa_size) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!RSA_private_transform(rsa, buf, in, rsa_size)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
switch (padding) {
|
|||
|
case RSA_PKCS1_PADDING:
|
|||
|
ret =
|
|||
|
RSA_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size);
|
|||
|
break;
|
|||
|
case RSA_PKCS1_OAEP_PADDING:
|
|||
|
// Use the default parameters: SHA-1 for both hashes and no label.
|
|||
|
ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf,
|
|||
|
rsa_size, NULL, 0, NULL, NULL);
|
|||
|
break;
|
|||
|
case RSA_NO_PADDING:
|
|||
|
*out_len = rsa_size;
|
|||
|
ret = 1;
|
|||
|
break;
|
|||
|
default:
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!ret) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
|
|||
|
}
|
|||
|
|
|||
|
err:
|
|||
|
if (padding != RSA_NO_PADDING) {
|
|||
|
OPENSSL_free(buf);
|
|||
|
}
|
|||
|
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
|
|||
|
|
|||
|
int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|||
|
const uint8_t *in, size_t in_len, int padding) {
|
|||
|
if (rsa->n == NULL || rsa->e == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
const unsigned rsa_size = RSA_size(rsa);
|
|||
|
BIGNUM *f, *result;
|
|||
|
|
|||
|
if (max_out < rsa_size) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
if (in_len != rsa_size) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
if (!check_modulus_and_exponent_sizes(rsa)) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
BN_CTX *ctx = BN_CTX_new();
|
|||
|
if (ctx == NULL) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
int ret = 0;
|
|||
|
uint8_t *buf = NULL;
|
|||
|
|
|||
|
BN_CTX_start(ctx);
|
|||
|
f = BN_CTX_get(ctx);
|
|||
|
result = BN_CTX_get(ctx);
|
|||
|
if (f == NULL || result == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (padding == RSA_NO_PADDING) {
|
|||
|
buf = out;
|
|||
|
} else {
|
|||
|
// Allocate a temporary buffer to hold the padded plaintext.
|
|||
|
buf = OPENSSL_malloc(rsa_size);
|
|||
|
if (buf == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (BN_bin2bn(in, in_len, f) == NULL) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (BN_ucmp(f, rsa->n) >= 0) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
|
|||
|
!BN_mod_exp_mont(result, f, rsa->e, rsa->n, ctx, rsa->mont_n)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_bn2bin_padded(buf, rsa_size, result)) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
switch (padding) {
|
|||
|
case RSA_PKCS1_PADDING:
|
|||
|
ret =
|
|||
|
RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size);
|
|||
|
break;
|
|||
|
case RSA_NO_PADDING:
|
|||
|
ret = 1;
|
|||
|
*out_len = rsa_size;
|
|||
|
break;
|
|||
|
default:
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!ret) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
err:
|
|||
|
BN_CTX_end(ctx);
|
|||
|
BN_CTX_free(ctx);
|
|||
|
if (buf != out) {
|
|||
|
OPENSSL_free(buf);
|
|||
|
}
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
|
|||
|
size_t len) {
|
|||
|
if (rsa->n == NULL || rsa->d == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
BIGNUM *f, *result;
|
|||
|
BN_CTX *ctx = NULL;
|
|||
|
unsigned blinding_index = 0;
|
|||
|
BN_BLINDING *blinding = NULL;
|
|||
|
int ret = 0;
|
|||
|
|
|||
|
ctx = BN_CTX_new();
|
|||
|
if (ctx == NULL) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
BN_CTX_start(ctx);
|
|||
|
f = BN_CTX_get(ctx);
|
|||
|
result = BN_CTX_get(ctx);
|
|||
|
|
|||
|
if (f == NULL || result == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (BN_bin2bn(in, len, f) == NULL) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (BN_ucmp(f, rsa->n) >= 0) {
|
|||
|
// Usually the padding functions would catch this.
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx)) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
const int do_blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0;
|
|||
|
|
|||
|
if (rsa->e == NULL && do_blinding) {
|
|||
|
// We cannot do blinding or verification without |e|, and continuing without
|
|||
|
// those countermeasures is dangerous. However, the Java/Android RSA API
|
|||
|
// requires support for keys where only |d| and |n| (and not |e|) are known.
|
|||
|
// The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|.
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (do_blinding) {
|
|||
|
blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
|
|||
|
if (blinding == NULL) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
|
|||
|
rsa->dmq1 != NULL && rsa->iqmp != NULL) {
|
|||
|
if (!mod_exp(result, f, rsa, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
} else if (!BN_mod_exp_mont_consttime(result, f, rsa->d, rsa->n, ctx,
|
|||
|
rsa->mont_n)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// Verify the result to protect against fault attacks as described in the
|
|||
|
// 1997 paper "On the Importance of Checking Cryptographic Protocols for
|
|||
|
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
|
|||
|
// implementations do this only when the CRT is used, but we do it in all
|
|||
|
// cases. Section 6 of the aforementioned paper describes an attack that
|
|||
|
// works when the CRT isn't used. That attack is much less likely to succeed
|
|||
|
// than the CRT attack, but there have likely been improvements since 1997.
|
|||
|
//
|
|||
|
// This check is cheap assuming |e| is small; it almost always is.
|
|||
|
if (rsa->e != NULL) {
|
|||
|
BIGNUM *vrfy = BN_CTX_get(ctx);
|
|||
|
if (vrfy == NULL ||
|
|||
|
!BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
|
|||
|
!BN_equal_consttime(vrfy, f)) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
if (do_blinding &&
|
|||
|
!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_bn2bin_padded(out, len, result)) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
ret = 1;
|
|||
|
|
|||
|
err:
|
|||
|
if (ctx != NULL) {
|
|||
|
BN_CTX_end(ctx);
|
|||
|
BN_CTX_free(ctx);
|
|||
|
}
|
|||
|
if (blinding != NULL) {
|
|||
|
rsa_blinding_release(rsa, blinding, blinding_index);
|
|||
|
}
|
|||
|
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
// mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced
|
|||
|
// modulo |p| times |q|. It returns one on success and zero on error.
|
|||
|
static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p,
|
|||
|
const BN_MONT_CTX *mont_p, const BIGNUM *q,
|
|||
|
BN_CTX *ctx) {
|
|||
|
// Reduce in constant time with Montgomery reduction, which requires I <= p *
|
|||
|
// R. If p and q are the same size, which is true for any RSA keys we or
|
|||
|
// anyone sane generates, we have q < R and I < p * q, so this holds.
|
|||
|
//
|
|||
|
// If q is too big, fall back to |BN_mod|.
|
|||
|
if (q->top > p->top) {
|
|||
|
return BN_mod(r, I, p, ctx);
|
|||
|
}
|
|||
|
|
|||
|
if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p.
|
|||
|
!BN_from_montgomery(r, I, mont_p, ctx) ||
|
|||
|
// Multiply by R^2 and do another Montgomery reduction to compute
|
|||
|
// I * R^-1 * R^2 * R^-1 = I mod p.
|
|||
|
!BN_to_montgomery(r, r, mont_p, ctx)) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
// By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and
|
|||
|
// adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute
|
|||
|
// I * R mod p here and save a reduction per prime. But this would require
|
|||
|
// changing the RSAZ code and may not be worth it.
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
|
|||
|
assert(ctx != NULL);
|
|||
|
|
|||
|
assert(rsa->n != NULL);
|
|||
|
assert(rsa->e != NULL);
|
|||
|
assert(rsa->d != NULL);
|
|||
|
assert(rsa->p != NULL);
|
|||
|
assert(rsa->q != NULL);
|
|||
|
assert(rsa->dmp1 != NULL);
|
|||
|
assert(rsa->dmq1 != NULL);
|
|||
|
assert(rsa->iqmp != NULL);
|
|||
|
|
|||
|
BIGNUM *r1, *m1, *vrfy;
|
|||
|
int ret = 0;
|
|||
|
|
|||
|
BN_CTX_start(ctx);
|
|||
|
r1 = BN_CTX_get(ctx);
|
|||
|
m1 = BN_CTX_get(ctx);
|
|||
|
vrfy = BN_CTX_get(ctx);
|
|||
|
if (r1 == NULL ||
|
|||
|
m1 == NULL ||
|
|||
|
vrfy == NULL) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_MONT_CTX_set_locked(&rsa->mont_p, &rsa->lock, rsa->p, ctx) ||
|
|||
|
!BN_MONT_CTX_set_locked(&rsa->mont_q, &rsa->lock, rsa->q, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// This is a pre-condition for |mod_montgomery|. It was already checked by the
|
|||
|
// caller.
|
|||
|
assert(BN_ucmp(I, rsa->n) < 0);
|
|||
|
|
|||
|
// compute I mod q
|
|||
|
if (!mod_montgomery(r1, I, rsa->q, rsa->mont_q, rsa->p, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// compute r1^dmq1 mod q
|
|||
|
if (!BN_mod_exp_mont_consttime(m1, r1, rsa->dmq1, rsa->q, ctx, rsa->mont_q)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// compute I mod p
|
|||
|
if (!mod_montgomery(r1, I, rsa->p, rsa->mont_p, rsa->q, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// compute r1^dmp1 mod p
|
|||
|
if (!BN_mod_exp_mont_consttime(r0, r1, rsa->dmp1, rsa->p, ctx, rsa->mont_p)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// TODO(davidben): The code below is not constant-time, even ignoring
|
|||
|
// |bn_correct_top|. To fix this:
|
|||
|
//
|
|||
|
// 1. Canonicalize keys on p > q. (p > q for keys we generate, but not ones we
|
|||
|
// import.) We have exposed structs, but we can generalize the
|
|||
|
// |BN_MONT_CTX_set_locked| trick to do a one-time canonicalization of the
|
|||
|
// private key where we optionally swap p and q (re-computing iqmp if
|
|||
|
// necessary) and fill in mont_*. This removes the p < q case below.
|
|||
|
//
|
|||
|
// 2. Compute r0 - m1 (mod p) in constant-time. With (1) done, this is just a
|
|||
|
// constant-time modular subtraction. It should be doable with
|
|||
|
// |bn_sub_words| and a select on the borrow bit.
|
|||
|
//
|
|||
|
// 3. When computing mont_*, additionally compute iqmp_mont, iqmp in
|
|||
|
// Montgomery form. The |BN_mul| and |BN_mod| pair can then be replaced
|
|||
|
// with |BN_mod_mul_montgomery|.
|
|||
|
|
|||
|
if (!BN_sub(r0, r0, m1)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
// This will help stop the size of r0 increasing, which does
|
|||
|
// affect the multiply if it optimised for a power of 2 size
|
|||
|
if (BN_is_negative(r0)) {
|
|||
|
if (!BN_add(r0, r0, rsa->p)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_mul(r1, r0, rsa->iqmp, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_mod(r0, r1, rsa->p, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// If p < q it is occasionally possible for the correction of
|
|||
|
// adding 'p' if r0 is negative above to leave the result still
|
|||
|
// negative. This can break the private key operations: the following
|
|||
|
// second correction should *always* correct this rare occurrence.
|
|||
|
// This will *never* happen with OpenSSL generated keys because
|
|||
|
// they ensure p > q [steve]
|
|||
|
if (BN_is_negative(r0)) {
|
|||
|
if (!BN_add(r0, r0, rsa->p)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
}
|
|||
|
if (!BN_mul(r1, r0, rsa->q, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (!BN_add(r0, r1, m1)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
ret = 1;
|
|||
|
|
|||
|
err:
|
|||
|
BN_CTX_end(ctx);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
static int ensure_bignum(BIGNUM **out) {
|
|||
|
if (*out == NULL) {
|
|||
|
*out = BN_new();
|
|||
|
}
|
|||
|
return *out != NULL;
|
|||
|
}
|
|||
|
|
|||
|
// kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2¹⁵³⁵×√2⌋. This is
|
|||
|
// chosen to give enough precision for 3072-bit RSA, the largest key size FIPS
|
|||
|
// specifies. Key sizes beyond this will round up.
|
|||
|
//
|
|||
|
// To verify this number, check that n² < 2³⁰⁷¹ < (n+1)², where n is value
|
|||
|
// represented here. Note the components are listed in little-endian order. Here
|
|||
|
// is some sample Python code to check:
|
|||
|
//
|
|||
|
// >>> TOBN = lambda a, b: a << 32 | b
|
|||
|
// >>> l = [ <paste the contents of kSqrtTwo> ]
|
|||
|
// >>> n = sum(a * 2**(64*i) for i, a in enumerate(l))
|
|||
|
// >>> n**2 < 2**3071 < (n+1)**2
|
|||
|
// True
|
|||
|
const BN_ULONG kBoringSSLRSASqrtTwo[] = {
|
|||
|
TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307),
|
|||
|
TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f),
|
|||
|
TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651),
|
|||
|
TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd),
|
|||
|
TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e),
|
|||
|
TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc),
|
|||
|
TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a),
|
|||
|
TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e),
|
|||
|
TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a),
|
|||
|
TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3),
|
|||
|
TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c),
|
|||
|
TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484),
|
|||
|
};
|
|||
|
const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo);
|
|||
|
|
|||
|
int rsa_greater_than_pow2(const BIGNUM *b, int n) {
|
|||
|
if (BN_is_negative(b) || n == INT_MAX) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
int b_bits = BN_num_bits(b);
|
|||
|
return b_bits > n + 1 || (b_bits == n + 1 && !BN_is_pow2(b));
|
|||
|
}
|
|||
|
|
|||
|
// generate_prime sets |out| to a prime with length |bits| such that |out|-1 is
|
|||
|
// relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to
|
|||
|
// |p|.
|
|||
|
static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e,
|
|||
|
const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb) {
|
|||
|
if (bits < 128 || (bits % BN_BITS2) != 0) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
// See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2.
|
|||
|
|
|||
|
// Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3,
|
|||
|
// the 186-4 limit is too low, so we use a higher one. Note this case is not
|
|||
|
// reachable from |RSA_generate_key_fips|.
|
|||
|
if (bits >= INT_MAX/32) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
int limit = BN_is_word(e, 3) ? bits * 32 : bits * 5;
|
|||
|
|
|||
|
int ret = 0, tries = 0, rand_tries = 0;
|
|||
|
BN_CTX_start(ctx);
|
|||
|
BIGNUM *tmp = BN_CTX_get(ctx);
|
|||
|
if (tmp == NULL) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
for (;;) {
|
|||
|
// Generate a random number of length |bits| where the bottom bit is set
|
|||
|
// (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the
|
|||
|
// bound checked below in steps 4.4 and 5.5).
|
|||
|
if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) ||
|
|||
|
!BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
if (p != NULL) {
|
|||
|
// If |p| and |out| are too close, try again (step 5.4).
|
|||
|
if (!BN_sub(tmp, out, p)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
BN_set_negative(tmp, 0);
|
|||
|
if (!rsa_greater_than_pow2(tmp, bits - 100)) {
|
|||
|
continue;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5).
|
|||
|
//
|
|||
|
// We check the most significant words, so we retry if ⌊out/2^k⌋ <= ⌊b/2^k⌋,
|
|||
|
// where b = 2^(bits-1)×√2 and k = max(0, bits - 1536). For key sizes up to
|
|||
|
// 3072 (bits = 1536), k = 0, so we are testing that ⌊out⌋ <= ⌊b⌋. out is an
|
|||
|
// integer and b is not, so this is equivalent to out < b. That is, the
|
|||
|
// comparison is exact for FIPS key sizes.
|
|||
|
//
|
|||
|
// For larger keys, the comparison is approximate, leaning towards
|
|||
|
// retrying. That is, we reject a negligible fraction of primes that are
|
|||
|
// within the FIPS bound, but we will never accept a prime outside the
|
|||
|
// bound, ensuring the resulting RSA key is the right size. Specifically, if
|
|||
|
// the FIPS bound holds, we have ⌊out/2^k⌋ < out/2^k < b/2^k. This implies
|
|||
|
// ⌊out/2^k⌋ <= ⌊b/2^k⌋. That is, the FIPS bound implies our bound and so we
|
|||
|
// are slightly tighter.
|
|||
|
size_t out_len = (size_t)out->top;
|
|||
|
assert(out_len == (size_t)bits / BN_BITS2);
|
|||
|
size_t to_check = kBoringSSLRSASqrtTwoLen;
|
|||
|
if (to_check > out_len) {
|
|||
|
to_check = out_len;
|
|||
|
}
|
|||
|
if (!bn_less_than_words(
|
|||
|
kBoringSSLRSASqrtTwo + kBoringSSLRSASqrtTwoLen - to_check,
|
|||
|
out->d + out_len - to_check, to_check)) {
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
// Check gcd(out-1, e) is one (steps 4.5 and 5.6).
|
|||
|
if (!BN_sub(tmp, out, BN_value_one()) ||
|
|||
|
!BN_gcd(tmp, tmp, e, ctx)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (BN_is_one(tmp)) {
|
|||
|
// Test |out| for primality (steps 4.5.1 and 5.6.1).
|
|||
|
int is_probable_prime;
|
|||
|
if (!BN_primality_test(&is_probable_prime, out, BN_prime_checks, ctx, 1,
|
|||
|
cb)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (is_probable_prime) {
|
|||
|
ret = 1;
|
|||
|
goto err;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// If we've tried too many times to find a prime, abort (steps 4.7 and
|
|||
|
// 5.8).
|
|||
|
tries++;
|
|||
|
if (tries >= limit) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
if (!BN_GENCB_call(cb, 2, tries)) {
|
|||
|
goto err;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
err:
|
|||
|
BN_CTX_end(ctx);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
|
|||
|
// See FIPS 186-4 appendix B.3. This function implements a generalized version
|
|||
|
// of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
|
|||
|
// for FIPS-compliant key generation.
|
|||
|
|
|||
|
// Always generate RSA keys which are a multiple of 128 bits. Round |bits|
|
|||
|
// down as needed.
|
|||
|
bits &= ~127;
|
|||
|
|
|||
|
// Reject excessively small keys.
|
|||
|
if (bits < 256) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
int ret = 0;
|
|||
|
BN_CTX *ctx = BN_CTX_new();
|
|||
|
if (ctx == NULL) {
|
|||
|
goto bn_err;
|
|||
|
}
|
|||
|
BN_CTX_start(ctx);
|
|||
|
BIGNUM *totient = BN_CTX_get(ctx);
|
|||
|
BIGNUM *pm1 = BN_CTX_get(ctx);
|
|||
|
BIGNUM *qm1 = BN_CTX_get(ctx);
|
|||
|
BIGNUM *gcd = BN_CTX_get(ctx);
|
|||
|
if (totient == NULL || pm1 == NULL || qm1 == NULL || gcd == NULL) {
|
|||
|
goto bn_err;
|
|||
|
}
|
|||
|
|
|||
|
// We need the RSA components non-NULL.
|
|||
|
if (!ensure_bignum(&rsa->n) ||
|
|||
|
!ensure_bignum(&rsa->d) ||
|
|||
|
!ensure_bignum(&rsa->e) ||
|
|||
|
!ensure_bignum(&rsa->p) ||
|
|||
|
!ensure_bignum(&rsa->q) ||
|
|||
|
!ensure_bignum(&rsa->dmp1) ||
|
|||
|
!ensure_bignum(&rsa->dmq1) ||
|
|||
|
!ensure_bignum(&rsa->iqmp)) {
|
|||
|
goto bn_err;
|
|||
|
}
|
|||
|
|
|||
|
if (!BN_copy(rsa->e, e_value)) {
|
|||
|
goto bn_err;
|
|||
|
}
|
|||
|
|
|||
|
int prime_bits = bits / 2;
|
|||
|
do {
|
|||
|
// Generate p and q, each of size |prime_bits|, using the steps outlined in
|
|||
|
// appendix FIPS 186-4 appendix B.3.3.
|
|||
|
if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, ctx, cb) ||
|
|||
|
!BN_GENCB_call(cb, 3, 0) ||
|
|||
|
!generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, ctx, cb) ||
|
|||
|
!BN_GENCB_call(cb, 3, 1)) {
|
|||
|
goto bn_err;
|
|||
|
}
|
|||
|
|
|||
|
if (BN_cmp(rsa->p, rsa->q) < 0) {
|
|||
|
BIGNUM *tmp = rsa->p;
|
|||
|
rsa->p = rsa->q;
|
|||
|
rsa->q = tmp;
|
|||
|
}
|
|||
|
|
|||
|
// Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
|
|||
|
// from typical RSA implementations which use (p-1)*(q-1).
|
|||
|
//
|
|||
|
// Note this means the size of d might reveal information about p-1 and
|
|||
|
// q-1. However, we do operations with Chinese Remainder Theorem, so we only
|
|||
|
// use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
|
|||
|
// does not affect those two values.
|
|||
|
if (!BN_sub(pm1, rsa->p, BN_value_one()) ||
|
|||
|
!BN_sub(qm1, rsa->q, BN_value_one()) ||
|
|||
|
!BN_mul(totient, pm1, qm1, ctx) ||
|
|||
|
!BN_gcd(gcd, pm1, qm1, ctx) ||
|
|||
|
!BN_div(totient, NULL, totient, gcd, ctx) ||
|
|||
|
!BN_mod_inverse(rsa->d, rsa->e, totient, ctx)) {
|
|||
|
goto bn_err;
|
|||
|
}
|
|||
|
|
|||
|
// Check that |rsa->d| > 2^|prime_bits| and try again if it fails. See
|
|||
|
// appendix B.3.1's guidance on values for d.
|
|||
|
} while (!rsa_greater_than_pow2(rsa->d, prime_bits));
|
|||
|
|
|||
|
if (// Calculate n.
|
|||
|
!BN_mul(rsa->n, rsa->p, rsa->q, ctx) ||
|
|||
|
// Calculate d mod (p-1).
|
|||
|
!BN_mod(rsa->dmp1, rsa->d, pm1, ctx) ||
|
|||
|
// Calculate d mod (q-1)
|
|||
|
!BN_mod(rsa->dmq1, rsa->d, qm1, ctx)) {
|
|||
|
goto bn_err;
|
|||
|
}
|
|||
|
|
|||
|
// Sanity-check that |rsa->n| has the specified size. This is implied by
|
|||
|
// |generate_prime|'s bounds.
|
|||
|
if (BN_num_bits(rsa->n) != (unsigned)bits) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
// Calculate inverse of q mod p. Note that although RSA key generation is far
|
|||
|
// from constant-time, |bn_mod_inverse_secret_prime| uses the same modular
|
|||
|
// exponentation logic as in RSA private key operations and, if the RSAZ-1024
|
|||
|
// code is enabled, will be optimized for common RSA prime sizes.
|
|||
|
if (!BN_MONT_CTX_set_locked(&rsa->mont_p, &rsa->lock, rsa->p, ctx) ||
|
|||
|
!bn_mod_inverse_secret_prime(rsa->iqmp, rsa->q, rsa->p, ctx,
|
|||
|
rsa->mont_p)) {
|
|||
|
goto bn_err;
|
|||
|
}
|
|||
|
|
|||
|
// The key generation process is complex and thus error-prone. It could be
|
|||
|
// disastrous to generate and then use a bad key so double-check that the key
|
|||
|
// makes sense.
|
|||
|
if (!RSA_check_key(rsa)) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
|
|||
|
goto err;
|
|||
|
}
|
|||
|
|
|||
|
ret = 1;
|
|||
|
|
|||
|
bn_err:
|
|||
|
if (!ret) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
|||
|
}
|
|||
|
err:
|
|||
|
if (ctx != NULL) {
|
|||
|
BN_CTX_end(ctx);
|
|||
|
BN_CTX_free(ctx);
|
|||
|
}
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) {
|
|||
|
// FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit
|
|||
|
// primes, respectively) with the prime generation method we use.
|
|||
|
if (bits != 2048 && bits != 3072) {
|
|||
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
BIGNUM *e = BN_new();
|
|||
|
int ret = e != NULL &&
|
|||
|
BN_set_word(e, RSA_F4) &&
|
|||
|
RSA_generate_key_ex(rsa, bits, e, cb) &&
|
|||
|
RSA_check_fips(rsa);
|
|||
|
BN_free(e);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) {
|
|||
|
// All of the methods are NULL to make it easier for the compiler/linker to
|
|||
|
// drop unused functions. The wrapper functions will select the appropriate
|
|||
|
// |rsa_default_*| implementation.
|
|||
|
OPENSSL_memset(out, 0, sizeof(RSA_METHOD));
|
|||
|
out->common.is_static = 1;
|
|||
|
}
|