Nagram/TMessagesProj/jni/voip/webrtc/modules/audio_processing/audio_buffer.cc

408 lines
15 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/audio_buffer.h"
#include <string.h>
#include <cstdint>
#include "common_audio/channel_buffer.h"
#include "common_audio/include/audio_util.h"
#include "common_audio/resampler/push_sinc_resampler.h"
#include "modules/audio_processing/splitting_filter.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr size_t kSamplesPer32kHzChannel = 320;
constexpr size_t kSamplesPer48kHzChannel = 480;
constexpr size_t kMaxSamplesPerChannel = AudioBuffer::kMaxSampleRate / 100;
size_t NumBandsFromFramesPerChannel(size_t num_frames) {
if (num_frames == kSamplesPer32kHzChannel) {
return 2;
}
if (num_frames == kSamplesPer48kHzChannel) {
return 3;
}
return 1;
}
} // namespace
AudioBuffer::AudioBuffer(size_t input_rate,
size_t input_num_channels,
size_t buffer_rate,
size_t buffer_num_channels,
size_t output_rate,
size_t output_num_channels)
: AudioBuffer(static_cast<int>(input_rate) / 100,
input_num_channels,
static_cast<int>(buffer_rate) / 100,
buffer_num_channels,
static_cast<int>(output_rate) / 100) {}
AudioBuffer::AudioBuffer(size_t input_num_frames,
size_t input_num_channels,
size_t buffer_num_frames,
size_t buffer_num_channels,
size_t output_num_frames)
: input_num_frames_(input_num_frames),
input_num_channels_(input_num_channels),
buffer_num_frames_(buffer_num_frames),
buffer_num_channels_(buffer_num_channels),
output_num_frames_(output_num_frames),
output_num_channels_(0),
num_channels_(buffer_num_channels),
num_bands_(NumBandsFromFramesPerChannel(buffer_num_frames_)),
num_split_frames_(rtc::CheckedDivExact(buffer_num_frames_, num_bands_)),
data_(
new ChannelBuffer<float>(buffer_num_frames_, buffer_num_channels_)) {
RTC_DCHECK_GT(input_num_frames_, 0);
RTC_DCHECK_GT(buffer_num_frames_, 0);
RTC_DCHECK_GT(output_num_frames_, 0);
RTC_DCHECK_GT(input_num_channels_, 0);
RTC_DCHECK_GT(buffer_num_channels_, 0);
RTC_DCHECK_LE(buffer_num_channels_, input_num_channels_);
const bool input_resampling_needed = input_num_frames_ != buffer_num_frames_;
const bool output_resampling_needed =
output_num_frames_ != buffer_num_frames_;
if (input_resampling_needed) {
for (size_t i = 0; i < buffer_num_channels_; ++i) {
input_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
new PushSincResampler(input_num_frames_, buffer_num_frames_)));
}
}
if (output_resampling_needed) {
for (size_t i = 0; i < buffer_num_channels_; ++i) {
output_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
new PushSincResampler(buffer_num_frames_, output_num_frames_)));
}
}
if (num_bands_ > 1) {
split_data_.reset(new ChannelBuffer<float>(
buffer_num_frames_, buffer_num_channels_, num_bands_));
splitting_filter_.reset(new SplittingFilter(
buffer_num_channels_, num_bands_, buffer_num_frames_));
}
}
AudioBuffer::~AudioBuffer() {}
void AudioBuffer::set_downmixing_to_specific_channel(size_t channel) {
downmix_by_averaging_ = false;
RTC_DCHECK_GT(input_num_channels_, channel);
channel_for_downmixing_ = std::min(channel, input_num_channels_ - 1);
}
void AudioBuffer::set_downmixing_by_averaging() {
downmix_by_averaging_ = true;
}
void AudioBuffer::CopyFrom(const float* const* stacked_data,
const StreamConfig& stream_config) {
RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_);
RTC_DCHECK_EQ(stream_config.num_channels(), input_num_channels_);
RestoreNumChannels();
const bool downmix_needed = input_num_channels_ > 1 && num_channels_ == 1;
const bool resampling_needed = input_num_frames_ != buffer_num_frames_;
if (downmix_needed) {
RTC_DCHECK_GE(kMaxSamplesPerChannel, input_num_frames_);
std::array<float, kMaxSamplesPerChannel> downmix;
if (downmix_by_averaging_) {
const float kOneByNumChannels = 1.f / input_num_channels_;
for (size_t i = 0; i < input_num_frames_; ++i) {
float value = stacked_data[0][i];
for (size_t j = 1; j < input_num_channels_; ++j) {
value += stacked_data[j][i];
}
downmix[i] = value * kOneByNumChannels;
}
}
const float* downmixed_data = downmix_by_averaging_
? downmix.data()
: stacked_data[channel_for_downmixing_];
if (resampling_needed) {
input_resamplers_[0]->Resample(downmixed_data, input_num_frames_,
data_->channels()[0], buffer_num_frames_);
}
const float* data_to_convert =
resampling_needed ? data_->channels()[0] : downmixed_data;
FloatToFloatS16(data_to_convert, buffer_num_frames_, data_->channels()[0]);
} else {
if (resampling_needed) {
for (size_t i = 0; i < num_channels_; ++i) {
input_resamplers_[i]->Resample(stacked_data[i], input_num_frames_,
data_->channels()[i],
buffer_num_frames_);
FloatToFloatS16(data_->channels()[i], buffer_num_frames_,
data_->channels()[i]);
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
FloatToFloatS16(stacked_data[i], buffer_num_frames_,
data_->channels()[i]);
}
}
}
}
void AudioBuffer::CopyTo(const StreamConfig& stream_config,
float* const* stacked_data) {
RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_);
const bool resampling_needed = output_num_frames_ != buffer_num_frames_;
if (resampling_needed) {
for (size_t i = 0; i < num_channels_; ++i) {
FloatS16ToFloat(data_->channels()[i], buffer_num_frames_,
data_->channels()[i]);
output_resamplers_[i]->Resample(data_->channels()[i], buffer_num_frames_,
stacked_data[i], output_num_frames_);
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
FloatS16ToFloat(data_->channels()[i], buffer_num_frames_,
stacked_data[i]);
}
}
for (size_t i = num_channels_; i < stream_config.num_channels(); ++i) {
memcpy(stacked_data[i], stacked_data[0],
output_num_frames_ * sizeof(**stacked_data));
}
}
void AudioBuffer::CopyTo(AudioBuffer* buffer) const {
RTC_DCHECK_EQ(buffer->num_frames(), output_num_frames_);
const bool resampling_needed = output_num_frames_ != buffer_num_frames_;
if (resampling_needed) {
for (size_t i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(data_->channels()[i], buffer_num_frames_,
buffer->channels()[i],
buffer->num_frames());
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
memcpy(buffer->channels()[i], data_->channels()[i],
buffer_num_frames_ * sizeof(**buffer->channels()));
}
}
for (size_t i = num_channels_; i < buffer->num_channels(); ++i) {
memcpy(buffer->channels()[i], buffer->channels()[0],
output_num_frames_ * sizeof(**buffer->channels()));
}
}
void AudioBuffer::RestoreNumChannels() {
num_channels_ = buffer_num_channels_;
data_->set_num_channels(buffer_num_channels_);
if (split_data_.get()) {
split_data_->set_num_channels(buffer_num_channels_);
}
}
void AudioBuffer::set_num_channels(size_t num_channels) {
RTC_DCHECK_GE(buffer_num_channels_, num_channels);
num_channels_ = num_channels;
data_->set_num_channels(num_channels);
if (split_data_.get()) {
split_data_->set_num_channels(num_channels);
}
}
// The resampler is only for supporting 48kHz to 16kHz in the reverse stream.
void AudioBuffer::CopyFrom(const int16_t* const interleaved_data,
const StreamConfig& stream_config) {
RTC_DCHECK_EQ(stream_config.num_channels(), input_num_channels_);
RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_);
RestoreNumChannels();
const bool resampling_required = input_num_frames_ != buffer_num_frames_;
const int16_t* interleaved = interleaved_data;
if (num_channels_ == 1) {
if (input_num_channels_ == 1) {
if (resampling_required) {
std::array<float, kMaxSamplesPerChannel> float_buffer;
S16ToFloatS16(interleaved, input_num_frames_, float_buffer.data());
input_resamplers_[0]->Resample(float_buffer.data(), input_num_frames_,
data_->channels()[0],
buffer_num_frames_);
} else {
S16ToFloatS16(interleaved, input_num_frames_, data_->channels()[0]);
}
} else {
std::array<float, kMaxSamplesPerChannel> float_buffer;
float* downmixed_data =
resampling_required ? float_buffer.data() : data_->channels()[0];
if (downmix_by_averaging_) {
for (size_t j = 0, k = 0; j < input_num_frames_; ++j) {
int32_t sum = 0;
for (size_t i = 0; i < input_num_channels_; ++i, ++k) {
sum += interleaved[k];
}
downmixed_data[j] = sum / static_cast<int16_t>(input_num_channels_);
}
} else {
for (size_t j = 0, k = channel_for_downmixing_; j < input_num_frames_;
++j, k += input_num_channels_) {
downmixed_data[j] = interleaved[k];
}
}
if (resampling_required) {
input_resamplers_[0]->Resample(downmixed_data, input_num_frames_,
data_->channels()[0],
buffer_num_frames_);
}
}
} else {
auto deinterleave_channel = [](size_t channel, size_t num_channels,
size_t samples_per_channel, const int16_t* x,
float* y) {
for (size_t j = 0, k = channel; j < samples_per_channel;
++j, k += num_channels) {
y[j] = x[k];
}
};
if (resampling_required) {
std::array<float, kMaxSamplesPerChannel> float_buffer;
for (size_t i = 0; i < num_channels_; ++i) {
deinterleave_channel(i, num_channels_, input_num_frames_, interleaved,
float_buffer.data());
input_resamplers_[i]->Resample(float_buffer.data(), input_num_frames_,
data_->channels()[i],
buffer_num_frames_);
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
deinterleave_channel(i, num_channels_, input_num_frames_, interleaved,
data_->channels()[i]);
}
}
}
}
void AudioBuffer::CopyTo(const StreamConfig& stream_config,
int16_t* const interleaved_data) {
const size_t config_num_channels = stream_config.num_channels();
RTC_DCHECK(config_num_channels == num_channels_ || num_channels_ == 1);
RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_);
const bool resampling_required = buffer_num_frames_ != output_num_frames_;
int16_t* interleaved = interleaved_data;
if (num_channels_ == 1) {
std::array<float, kMaxSamplesPerChannel> float_buffer;
if (resampling_required) {
output_resamplers_[0]->Resample(data_->channels()[0], buffer_num_frames_,
float_buffer.data(), output_num_frames_);
}
const float* deinterleaved =
resampling_required ? float_buffer.data() : data_->channels()[0];
if (config_num_channels == 1) {
for (size_t j = 0; j < output_num_frames_; ++j) {
interleaved[j] = FloatS16ToS16(deinterleaved[j]);
}
} else {
for (size_t i = 0, k = 0; i < output_num_frames_; ++i) {
float tmp = FloatS16ToS16(deinterleaved[i]);
for (size_t j = 0; j < config_num_channels; ++j, ++k) {
interleaved[k] = tmp;
}
}
}
} else {
auto interleave_channel = [](size_t channel, size_t num_channels,
size_t samples_per_channel, const float* x,
int16_t* y) {
for (size_t k = 0, j = channel; k < samples_per_channel;
++k, j += num_channels) {
y[j] = FloatS16ToS16(x[k]);
}
};
if (resampling_required) {
for (size_t i = 0; i < num_channels_; ++i) {
std::array<float, kMaxSamplesPerChannel> float_buffer;
output_resamplers_[i]->Resample(data_->channels()[i],
buffer_num_frames_, float_buffer.data(),
output_num_frames_);
interleave_channel(i, config_num_channels, output_num_frames_,
float_buffer.data(), interleaved);
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
interleave_channel(i, config_num_channels, output_num_frames_,
data_->channels()[i], interleaved);
}
}
for (size_t i = num_channels_; i < config_num_channels; ++i) {
for (size_t j = 0, k = i, n = num_channels_; j < output_num_frames_;
++j, k += config_num_channels, n += config_num_channels) {
interleaved[k] = interleaved[n];
}
}
}
}
void AudioBuffer::SplitIntoFrequencyBands() {
splitting_filter_->Analysis(data_.get(), split_data_.get());
}
void AudioBuffer::MergeFrequencyBands() {
splitting_filter_->Synthesis(split_data_.get(), data_.get());
}
void AudioBuffer::ExportSplitChannelData(
size_t channel,
int16_t* const* split_band_data) const {
for (size_t k = 0; k < num_bands(); ++k) {
const float* band_data = split_bands_const(channel)[k];
RTC_DCHECK(split_band_data[k]);
RTC_DCHECK(band_data);
for (size_t i = 0; i < num_frames_per_band(); ++i) {
split_band_data[k][i] = FloatS16ToS16(band_data[i]);
}
}
}
void AudioBuffer::ImportSplitChannelData(
size_t channel,
const int16_t* const* split_band_data) {
for (size_t k = 0; k < num_bands(); ++k) {
float* band_data = split_bands(channel)[k];
RTC_DCHECK(split_band_data[k]);
RTC_DCHECK(band_data);
for (size_t i = 0; i < num_frames_per_band(); ++i) {
band_data[i] = split_band_data[k][i];
}
}
}
} // namespace webrtc