114 lines
4.0 KiB
C
114 lines
4.0 KiB
C
|
// Copyright 2017 The Abseil Authors.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
|
||
|
#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
|
||
|
|
||
|
#include <cstddef>
|
||
|
#include <iostream>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "absl/strings/string_view.h"
|
||
|
#include "absl/types/span.h"
|
||
|
|
||
|
// NOTE: The functions in this file are test only, and are should not be used in
|
||
|
// non-test code.
|
||
|
|
||
|
namespace absl {
|
||
|
ABSL_NAMESPACE_BEGIN
|
||
|
namespace random_internal {
|
||
|
|
||
|
// http://webspace.ship.edu/pgmarr/Geo441/Lectures/Lec%205%20-%20Normality%20Testing.pdf
|
||
|
|
||
|
// Compute the 1st to 4th standard moments:
|
||
|
// mean, variance, skewness, and kurtosis.
|
||
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
|
||
|
struct DistributionMoments {
|
||
|
size_t n = 0;
|
||
|
double mean = 0.0;
|
||
|
double variance = 0.0;
|
||
|
double skewness = 0.0;
|
||
|
double kurtosis = 0.0;
|
||
|
};
|
||
|
DistributionMoments ComputeDistributionMoments(
|
||
|
absl::Span<const double> data_points);
|
||
|
|
||
|
std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments);
|
||
|
|
||
|
// Computes the Z-score for a set of data with the given distribution moments
|
||
|
// compared against `expected_mean`.
|
||
|
double ZScore(double expected_mean, const DistributionMoments& moments);
|
||
|
|
||
|
// Returns the probability of success required for a single trial to ensure that
|
||
|
// after `num_trials` trials, the probability of at least one failure is no more
|
||
|
// than `p_fail`.
|
||
|
double RequiredSuccessProbability(double p_fail, int num_trials);
|
||
|
|
||
|
// Computes the maximum distance from the mean tolerable, for Z-Tests that are
|
||
|
// expected to pass with `acceptance_probability`. Will terminate if the
|
||
|
// resulting tolerance is zero (due to passing in 0.0 for
|
||
|
// `acceptance_probability` or rounding errors).
|
||
|
//
|
||
|
// For example,
|
||
|
// MaxErrorTolerance(0.001) = 0.0
|
||
|
// MaxErrorTolerance(0.5) = ~0.47
|
||
|
// MaxErrorTolerance(1.0) = inf
|
||
|
double MaxErrorTolerance(double acceptance_probability);
|
||
|
|
||
|
// Approximation to inverse of the Error Function in double precision.
|
||
|
// (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)
|
||
|
double erfinv(double x);
|
||
|
|
||
|
// Beta(p, q) = Gamma(p) * Gamma(q) / Gamma(p+q)
|
||
|
double beta(double p, double q);
|
||
|
|
||
|
// The inverse of the normal survival function.
|
||
|
double InverseNormalSurvival(double x);
|
||
|
|
||
|
// Returns whether actual is "near" expected, based on the bound.
|
||
|
bool Near(absl::string_view msg, double actual, double expected, double bound);
|
||
|
|
||
|
// Implements the incomplete regularized beta function, AS63, BETAIN.
|
||
|
// https://www.jstor.org/stable/2346797
|
||
|
//
|
||
|
// BetaIncomplete(x, p, q), where
|
||
|
// `x` is the value of the upper limit
|
||
|
// `p` is beta parameter p, `q` is beta parameter q.
|
||
|
//
|
||
|
// NOTE: This is a test-only function which is only accurate to within, at most,
|
||
|
// 1e-13 of the actual value.
|
||
|
//
|
||
|
double BetaIncomplete(double x, double p, double q);
|
||
|
|
||
|
// Implements the inverse of the incomplete regularized beta function, AS109,
|
||
|
// XINBTA.
|
||
|
// https://www.jstor.org/stable/2346798
|
||
|
// https://www.jstor.org/stable/2346887
|
||
|
//
|
||
|
// BetaIncompleteInv(p, q, beta, alhpa)
|
||
|
// `p` is beta parameter p, `q` is beta parameter q.
|
||
|
// `alpha` is the value of the lower tail area.
|
||
|
//
|
||
|
// NOTE: This is a test-only function and, when successful, is only accurate to
|
||
|
// within ~1e-6 of the actual value; there are some cases where it diverges from
|
||
|
// the actual value by much more than that. The function uses Newton's method,
|
||
|
// and thus the runtime is highly variable.
|
||
|
double BetaIncompleteInv(double p, double q, double alpha);
|
||
|
|
||
|
} // namespace random_internal
|
||
|
ABSL_NAMESPACE_END
|
||
|
} // namespace absl
|
||
|
|
||
|
#endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
|