Nagram/TMessagesProj/jni/webrtc/base/threading/hang_watcher.h

250 lines
8.7 KiB
C
Raw Normal View History

2020-08-14 16:58:22 +00:00
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_THREADING_HANG_WATCHER_H_
#define BASE_THREADING_HANG_WATCHER_H_
#include <atomic>
#include <memory>
#include <vector>
#include "base/atomicops.h"
#include "base/callback.h"
#include "base/callback_helpers.h"
#include "base/feature_list.h"
#include "base/synchronization/lock.h"
#include "base/threading/simple_thread.h"
#include "base/threading/thread_checker.h"
#include "base/threading/thread_local.h"
#include "base/time/time.h"
namespace base {
class HangWatchScope;
namespace internal {
class HangWatchState;
} // namespace internal
} // namespace base
namespace base {
// Instantiate a HangWatchScope in a scope to register to be
// watched for hangs of more than |timeout| by the HangWatcher.
//
// Example usage:
//
// void FooBar(){
// HangWatchScope scope(base::TimeDelta::FromSeconds(5));
// DoSomeWork();
// }
//
// If DoSomeWork() takes more than 5s to run and the HangWatcher
// inspects the thread state before Foobar returns a hang will be
// reported.
//
// HangWatchScopes are typically meant to live on the stack. In some cases it's
// necessary to keep a HangWatchScope instance as a class member but special
// care is required when doing so as a HangWatchScope that stays alive longer
// than intended will generate non-actionable hang reports.
class BASE_EXPORT HangWatchScope {
public:
// A good default value needs to be large enough to represent a significant
// hang and avoid noise while being small enough to not exclude too many
// hangs. The nature of the work that gets executed on the thread is also
// important. We can be much stricter when monitoring a UI thread compared tp
// a ThreadPool thread for example.
static const base::TimeDelta kDefaultHangWatchTime;
// Constructing/destructing thread must be the same thread.
explicit HangWatchScope(TimeDelta timeout);
~HangWatchScope();
HangWatchScope(const HangWatchScope&) = delete;
HangWatchScope& operator=(const HangWatchScope&) = delete;
private:
// This object should always be constructed and destructed on the same thread.
THREAD_CHECKER(thread_checker_);
// The deadline set by the previous HangWatchScope created on this thread.
// Stored so it can be restored when this HangWatchScope is destroyed.
TimeTicks previous_deadline_;
#if DCHECK_IS_ON()
// The previous HangWatchScope created on this thread.
HangWatchScope* previous_scope_;
#endif
};
// Monitors registered threads for hangs by inspecting their associated
// HangWatchStates for deadline overruns. This happens at a regular interval on
// a separate thread. Only one instance of HangWatcher can exist at a time
// within a single process. This instance must outlive all monitored threads.
class BASE_EXPORT HangWatcher : public DelegateSimpleThread::Delegate {
public:
static const base::Feature kEnableHangWatcher;
// The first invocation of the constructor will set the global instance
// accessible through GetInstance(). This means that only one instance can
// exist at a time.
explicit HangWatcher(RepeatingClosure on_hang_closure);
// Clears the global instance for the class.
~HangWatcher() override;
HangWatcher(const HangWatcher&) = delete;
HangWatcher& operator=(const HangWatcher&) = delete;
// Returns a non-owning pointer to the global HangWatcher instance.
static HangWatcher* GetInstance();
// Invoke base::debug::DumpWithoutCrashing() insuring that the stack frame
// right under it in the trace belongs to HangWatcher for easier attribution.
NOINLINE static void RecordHang();
// Sets up the calling thread to be monitored for threads. Returns a
// ScopedClosureRunner that unregisters the thread. This closure has to be
// called from the registered thread before it's joined.
ScopedClosureRunner RegisterThread()
LOCKS_EXCLUDED(watch_state_lock_) WARN_UNUSED_RESULT;
// Choose a closure to be run at the end of each call to Monitor(). Use only
// for testing.
void SetAfterMonitorClosureForTesting(base::RepeatingClosure closure);
// Set a monitoring period other than the default. Use only for
// testing.
void SetMonitoringPeriodForTesting(base::TimeDelta period);
// Force the monitoring loop to resume and evaluate whether to continue.
// This can trigger a call to Monitor() or not depending on why the
// HangWatcher thread is sleeping. Use only for testing.
void SignalMonitorEventForTesting();
// Use to block until the hang is recorded. Allows the caller to halt
// execution so it does not overshoot the hang watch target and result in a
// non-actionable stack trace in the crash recorded.
void BlockIfCaptureInProgress();
private:
THREAD_CHECKER(thread_checker_);
// Inspects the state of all registered threads to check if they are hung and
// invokes the appropriate closure if so.
void Monitor();
// Call Run() on the HangWatcher thread.
void Start();
// Stop all monitoring and join the HangWatcher thread.
void Stop();
// Run the loop that periodically monitors the registered thread at a
// set time interval.
void Run() override;
base::TimeDelta monitor_period_;
// Indicates whether Run() should return after the next monitoring.
std::atomic<bool> keep_monitoring_{true};
// Use to make the HangWatcher thread wake or sleep to schedule the
// appropriate monitoring frequency.
WaitableEvent should_monitor_;
bool IsWatchListEmpty() LOCKS_EXCLUDED(watch_state_lock_);
// Stops hang watching on the calling thread by removing the entry from the
// watch list.
void UnregisterThread() LOCKS_EXCLUDED(watch_state_lock_);
const RepeatingClosure on_hang_closure_;
Lock watch_state_lock_;
std::vector<std::unique_ptr<internal::HangWatchState>> watch_states_
GUARDED_BY(watch_state_lock_);
base::DelegateSimpleThread thread_;
base::RepeatingClosure after_monitor_closure_for_testing_;
base::Lock capture_lock_;
std::atomic<bool> capture_in_progress{false};
FRIEND_TEST_ALL_PREFIXES(HangWatcherTest, NestedScopes);
};
// Classes here are exposed in the header only for testing. They are not
// intended to be used outside of base.
namespace internal {
// Contains the information necessary for hang watching a specific
// thread. Instances of this class are accessed concurrently by the associated
// thread and the HangWatcher. The HangWatcher owns instances of this
// class and outside of it they are accessed through
// GetHangWatchStateForCurrentThread().
class BASE_EXPORT HangWatchState {
public:
HangWatchState();
~HangWatchState();
HangWatchState(const HangWatchState&) = delete;
HangWatchState& operator=(const HangWatchState&) = delete;
// Allocates a new state object bound to the calling thread and returns an
// owning pointer to it.
static std::unique_ptr<HangWatchState> CreateHangWatchStateForCurrentThread();
// Retrieves the hang watch state associated with the calling thread.
// Returns nullptr if no HangWatchState exists for the current thread (see
// CreateHangWatchStateForCurrentThread()).
static ThreadLocalPointer<HangWatchState>*
GetHangWatchStateForCurrentThread();
// Returns the value of the current deadline. Use this function if you need to
// store the value. To test if the deadline has expired use IsOverDeadline().
TimeTicks GetDeadline() const;
// Atomically sets the deadline to a new value and return the previous value.
void SetDeadline(TimeTicks deadline);
// Tests whether the associated thread's execution has gone over the deadline.
bool IsOverDeadline() const;
#if DCHECK_IS_ON()
// Saves the supplied HangWatchScope as the currently active scope.
void SetCurrentHangWatchScope(HangWatchScope* scope);
// Retrieve the currently active scope.
HangWatchScope* GetCurrentHangWatchScope();
#endif
private:
// The thread that creates the instance should be the class that updates
// the deadline.
THREAD_CHECKER(thread_checker_);
// If the deadline fails to be updated before TimeTicks::Now() ever
// reaches the value contained in it this constistutes a hang.
std::atomic<TimeTicks> deadline_{base::TimeTicks::Max()};
#if DCHECK_IS_ON()
// Used to keep track of the current HangWatchScope and detect improper usage.
// Scopes should always be destructed in reverse order from the one they were
// constructed in. Example of improper use:
//
// {
// std::unique_ptr<Scope> scope = std::make_unique<Scope>(...);
// Scope other_scope;
// |scope| gets deallocated first, violating reverse destruction order.
// scope.reset();
// }
HangWatchScope* current_hang_watch_scope_{nullptr};
#endif
};
} // namespace internal
} // namespace base
#endif // BASE_THREADING_HANG_WATCHER_H_