Nagram/TMessagesProj/jni/webrtc/modules/pacing/task_queue_paced_sender.cc

317 lines
11 KiB
C++
Raw Normal View History

2020-08-14 16:58:22 +00:00
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/task_queue_paced_sender.h"
#include <algorithm>
#include <utility>
#include "absl/memory/memory.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "rtc_base/trace_event.h"
namespace webrtc {
namespace {
// If no calls to MaybeProcessPackets() happen, make sure we update stats
// at least every |kMaxTimeBetweenStatsUpdates| as long as the pacer isn't
// completely drained.
constexpr TimeDelta kMaxTimeBetweenStatsUpdates = TimeDelta::Millis(33);
// Don't call UpdateStats() more than |kMinTimeBetweenStatsUpdates| apart,
// for performance reasons.
constexpr TimeDelta kMinTimeBetweenStatsUpdates = TimeDelta::Millis(1);
} // namespace
TaskQueuePacedSender::TaskQueuePacedSender(
Clock* clock,
PacketRouter* packet_router,
RtcEventLog* event_log,
const WebRtcKeyValueConfig* field_trials,
TaskQueueFactory* task_queue_factory,
TimeDelta hold_back_window)
: clock_(clock),
hold_back_window_(hold_back_window),
pacing_controller_(clock,
packet_router,
event_log,
field_trials,
PacingController::ProcessMode::kDynamic),
next_process_time_(Timestamp::MinusInfinity()),
stats_update_scheduled_(false),
last_stats_time_(Timestamp::MinusInfinity()),
is_shutdown_(false),
task_queue_(task_queue_factory->CreateTaskQueue(
"TaskQueuePacedSender",
TaskQueueFactory::Priority::NORMAL)) {}
TaskQueuePacedSender::~TaskQueuePacedSender() {
// Post an immediate task to mark the queue as shutting down.
// The rtc::TaskQueue destructor will wait for pending tasks to
// complete before continuing.
task_queue_.PostTask([&]() {
RTC_DCHECK_RUN_ON(&task_queue_);
is_shutdown_ = true;
});
}
void TaskQueuePacedSender::CreateProbeCluster(DataRate bitrate,
int cluster_id) {
task_queue_.PostTask([this, bitrate, cluster_id]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.CreateProbeCluster(bitrate, cluster_id);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::Pause() {
task_queue_.PostTask([this]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.Pause();
});
}
void TaskQueuePacedSender::Resume() {
task_queue_.PostTask([this]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.Resume();
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetCongestionWindow(
DataSize congestion_window_size) {
task_queue_.PostTask([this, congestion_window_size]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetCongestionWindow(congestion_window_size);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::UpdateOutstandingData(DataSize outstanding_data) {
if (task_queue_.IsCurrent()) {
RTC_DCHECK_RUN_ON(&task_queue_);
// Fast path since this can be called once per sent packet while on the
// task queue.
pacing_controller_.UpdateOutstandingData(outstanding_data);
return;
}
task_queue_.PostTask([this, outstanding_data]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.UpdateOutstandingData(outstanding_data);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetPacingRates(DataRate pacing_rate,
DataRate padding_rate) {
task_queue_.PostTask([this, pacing_rate, padding_rate]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetPacingRates(pacing_rate, padding_rate);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::EnqueuePackets(
std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
#if RTC_TRACE_EVENTS_ENABLED
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("webrtc"),
"TaskQueuePacedSender::EnqueuePackets");
for (auto& packet : packets) {
TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("webrtc"),
"TaskQueuePacedSender::EnqueuePackets::Loop",
"sequence_number", packet->SequenceNumber(), "rtp_timestamp",
packet->Timestamp());
}
#endif
task_queue_.PostTask([this, packets_ = std::move(packets)]() mutable {
RTC_DCHECK_RUN_ON(&task_queue_);
for (auto& packet : packets_) {
pacing_controller_.EnqueuePacket(std::move(packet));
}
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetAccountForAudioPackets(bool account_for_audio) {
task_queue_.PostTask([this, account_for_audio]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetAccountForAudioPackets(account_for_audio);
});
}
void TaskQueuePacedSender::SetIncludeOverhead() {
task_queue_.PostTask([this]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetIncludeOverhead();
});
}
void TaskQueuePacedSender::SetTransportOverhead(DataSize overhead_per_packet) {
task_queue_.PostTask([this, overhead_per_packet]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetTransportOverhead(overhead_per_packet);
});
}
void TaskQueuePacedSender::SetQueueTimeLimit(TimeDelta limit) {
task_queue_.PostTask([this, limit]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetQueueTimeLimit(limit);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
TimeDelta TaskQueuePacedSender::ExpectedQueueTime() const {
return GetStats().expected_queue_time;
}
DataSize TaskQueuePacedSender::QueueSizeData() const {
return GetStats().queue_size;
}
absl::optional<Timestamp> TaskQueuePacedSender::FirstSentPacketTime() const {
return GetStats().first_sent_packet_time;
}
TimeDelta TaskQueuePacedSender::OldestPacketWaitTime() const {
return GetStats().oldest_packet_wait_time;
}
void TaskQueuePacedSender::OnStatsUpdated(const Stats& stats) {
MutexLock lock(&stats_mutex_);
current_stats_ = stats;
}
void TaskQueuePacedSender::MaybeProcessPackets(
Timestamp scheduled_process_time) {
RTC_DCHECK_RUN_ON(&task_queue_);
if (is_shutdown_) {
return;
}
// Normally, run ProcessPackets() only if this is the scheduled task.
// If it is not but it is already time to process and there either is
// no scheduled task or the schedule has shifted forward in time, run
// anyway and clear any schedule.
Timestamp next_process_time = pacing_controller_.NextSendTime();
const Timestamp now = clock_->CurrentTime();
const bool is_scheduled_call = next_process_time_ == scheduled_process_time;
if (is_scheduled_call) {
// Indicate no pending scheduled call.
next_process_time_ = Timestamp::MinusInfinity();
}
if (is_scheduled_call ||
(now >= next_process_time && (next_process_time_.IsInfinite() ||
next_process_time < next_process_time_))) {
pacing_controller_.ProcessPackets();
next_process_time = pacing_controller_.NextSendTime();
}
absl::optional<TimeDelta> time_to_next_process;
if (pacing_controller_.IsProbing() &&
next_process_time != next_process_time_) {
// If we're probing and there isn't already a wakeup scheduled for the next
// process time, always post a task and just round sleep time down to
// nearest millisecond.
time_to_next_process =
std::max(TimeDelta::Zero(),
(next_process_time - now).RoundDownTo(TimeDelta::Millis(1)));
} else if (next_process_time_.IsMinusInfinity() ||
next_process_time <= next_process_time_ - hold_back_window_) {
// Schedule a new task since there is none currently scheduled
// (|next_process_time_| is infinite), or the new process time is at least
// one holdback window earlier than whatever is currently scheduled.
time_to_next_process = std::max(next_process_time - now, hold_back_window_);
}
if (time_to_next_process) {
// Set a new scheduled process time and post a delayed task.
next_process_time_ = next_process_time;
task_queue_.PostDelayedTask(
[this, next_process_time]() { MaybeProcessPackets(next_process_time); },
time_to_next_process->ms<uint32_t>());
}
MaybeUpdateStats(false);
}
void TaskQueuePacedSender::MaybeUpdateStats(bool is_scheduled_call) {
if (is_shutdown_) {
if (is_scheduled_call) {
stats_update_scheduled_ = false;
}
return;
}
Timestamp now = clock_->CurrentTime();
if (is_scheduled_call) {
// Allow scheduled task to process packets to clear up an remaining debt
// level in an otherwise empty queue.
pacing_controller_.ProcessPackets();
} else {
if (now - last_stats_time_ < kMinTimeBetweenStatsUpdates) {
// Too frequent unscheduled stats update, return early.
return;
}
}
Stats new_stats;
new_stats.expected_queue_time = pacing_controller_.ExpectedQueueTime();
new_stats.first_sent_packet_time = pacing_controller_.FirstSentPacketTime();
new_stats.oldest_packet_wait_time = pacing_controller_.OldestPacketWaitTime();
new_stats.queue_size = pacing_controller_.QueueSizeData();
OnStatsUpdated(new_stats);
last_stats_time_ = now;
bool pacer_drained = pacing_controller_.QueueSizePackets() == 0 &&
pacing_controller_.CurrentBufferLevel().IsZero();
// If there's anything interesting to get from the pacer and this is a
// scheduled call (or no scheduled call in flight), post a new scheduled stats
// update.
if (!pacer_drained) {
if (!stats_update_scheduled_) {
// There is no pending delayed task to update stats, add one.
// Treat this call as being scheduled in order to bootstrap scheduling
// loop.
stats_update_scheduled_ = true;
is_scheduled_call = true;
}
// Only if on the scheduled call loop do we want to schedule a new delayed
// task.
if (is_scheduled_call) {
task_queue_.PostDelayedTask(
[this]() {
RTC_DCHECK_RUN_ON(&task_queue_);
MaybeUpdateStats(true);
},
kMaxTimeBetweenStatsUpdates.ms<uint32_t>());
}
} else if (is_scheduled_call) {
// This is a scheduled call, signing out since there's nothing interesting
// left to check.
stats_update_scheduled_ = false;
}
}
TaskQueuePacedSender::Stats TaskQueuePacedSender::GetStats() const {
MutexLock lock(&stats_mutex_);
return current_stats_;
}
} // namespace webrtc