Nagram/TMessagesProj/jni/webrtc/rtc_base/units/unit_base.h

307 lines
11 KiB
C
Raw Normal View History

2020-08-14 16:58:22 +00:00
/*
* Copyright 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef RTC_BASE_UNITS_UNIT_BASE_H_
#define RTC_BASE_UNITS_UNIT_BASE_H_
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <type_traits>
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace rtc_units_impl {
// UnitBase is a base class for implementing custom value types with a specific
// unit. It provides type safety and commonly useful operations. The underlying
// storage is always an int64_t, it's up to the unit implementation to choose
// what scale it represents.
//
// It's used like:
// class MyUnit: public UnitBase<MyUnit> {...};
//
// Unit_T is the subclass representing the specific unit.
template <class Unit_T>
class UnitBase {
public:
UnitBase() = delete;
static constexpr Unit_T Zero() { return Unit_T(0); }
static constexpr Unit_T PlusInfinity() { return Unit_T(PlusInfinityVal()); }
static constexpr Unit_T MinusInfinity() { return Unit_T(MinusInfinityVal()); }
constexpr bool IsZero() const { return value_ == 0; }
constexpr bool IsFinite() const { return !IsInfinite(); }
constexpr bool IsInfinite() const {
return value_ == PlusInfinityVal() || value_ == MinusInfinityVal();
}
constexpr bool IsPlusInfinity() const { return value_ == PlusInfinityVal(); }
constexpr bool IsMinusInfinity() const {
return value_ == MinusInfinityVal();
}
constexpr bool operator==(const Unit_T& other) const {
return value_ == other.value_;
}
constexpr bool operator!=(const Unit_T& other) const {
return value_ != other.value_;
}
constexpr bool operator<=(const Unit_T& other) const {
return value_ <= other.value_;
}
constexpr bool operator>=(const Unit_T& other) const {
return value_ >= other.value_;
}
constexpr bool operator>(const Unit_T& other) const {
return value_ > other.value_;
}
constexpr bool operator<(const Unit_T& other) const {
return value_ < other.value_;
}
constexpr Unit_T RoundTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T((value_ + resolution.value_ / 2) / resolution.value_) *
resolution.value_;
}
constexpr Unit_T RoundUpTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T((value_ + resolution.value_ - 1) / resolution.value_) *
resolution.value_;
}
constexpr Unit_T RoundDownTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T(value_ / resolution.value_) * resolution.value_;
}
protected:
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static constexpr Unit_T FromValue(T value) {
if (Unit_T::one_sided)
RTC_DCHECK_GE(value, 0);
RTC_DCHECK_GT(value, MinusInfinityVal());
RTC_DCHECK_LT(value, PlusInfinityVal());
return Unit_T(rtc::dchecked_cast<int64_t>(value));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static constexpr Unit_T FromValue(T value) {
if (value == std::numeric_limits<T>::infinity()) {
return PlusInfinity();
} else if (value == -std::numeric_limits<T>::infinity()) {
return MinusInfinity();
} else {
RTC_DCHECK(!std::isnan(value));
return FromValue(rtc::dchecked_cast<int64_t>(value));
}
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static constexpr Unit_T FromFraction(int64_t denominator, T value) {
if (Unit_T::one_sided)
RTC_DCHECK_GE(value, 0);
RTC_DCHECK_GT(value, MinusInfinityVal() / denominator);
RTC_DCHECK_LT(value, PlusInfinityVal() / denominator);
return Unit_T(rtc::dchecked_cast<int64_t>(value * denominator));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static constexpr Unit_T FromFraction(int64_t denominator, T value) {
return FromValue(value * denominator);
}
template <typename T = int64_t>
constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
ToValue() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(value_);
}
template <typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
ToValue() const {
return IsPlusInfinity()
? std::numeric_limits<T>::infinity()
: IsMinusInfinity() ? -std::numeric_limits<T>::infinity()
: value_;
}
template <typename T>
constexpr T ToValueOr(T fallback_value) const {
return IsFinite() ? value_ : fallback_value;
}
template <int64_t Denominator, typename T = int64_t>
constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
ToFraction() const {
RTC_DCHECK(IsFinite());
if (Unit_T::one_sided) {
return rtc::dchecked_cast<T>(
DivRoundPositiveToNearest(value_, Denominator));
} else {
return rtc::dchecked_cast<T>(DivRoundToNearest(value_, Denominator));
}
}
template <int64_t Denominator, typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
ToFraction() const {
return ToValue<T>() * (1 / static_cast<T>(Denominator));
}
template <int64_t Denominator>
constexpr int64_t ToFractionOr(int64_t fallback_value) const {
return IsFinite() ? Unit_T::one_sided
? DivRoundPositiveToNearest(value_, Denominator)
: DivRoundToNearest(value_, Denominator)
: fallback_value;
}
template <int64_t Factor, typename T = int64_t>
constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
ToMultiple() const {
RTC_DCHECK_GE(ToValue(), std::numeric_limits<T>::min() / Factor);
RTC_DCHECK_LE(ToValue(), std::numeric_limits<T>::max() / Factor);
return rtc::dchecked_cast<T>(ToValue() * Factor);
}
template <int64_t Factor, typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
ToMultiple() const {
return ToValue<T>() * Factor;
}
explicit constexpr UnitBase(int64_t value) : value_(value) {}
private:
template <class RelativeUnit_T>
friend class RelativeUnit;
static inline constexpr int64_t PlusInfinityVal() {
return std::numeric_limits<int64_t>::max();
}
static inline constexpr int64_t MinusInfinityVal() {
return std::numeric_limits<int64_t>::min();
}
constexpr Unit_T& AsSubClassRef() { return static_cast<Unit_T&>(*this); }
constexpr const Unit_T& AsSubClassRef() const {
return static_cast<const Unit_T&>(*this);
}
// Assumes that n >= 0 and d > 0.
static constexpr int64_t DivRoundPositiveToNearest(int64_t n, int64_t d) {
return (n + d / 2) / d;
}
// Assumes that d > 0.
static constexpr int64_t DivRoundToNearest(int64_t n, int64_t d) {
return (n + (n >= 0 ? d / 2 : -d / 2)) / d;
}
int64_t value_;
};
// Extends UnitBase to provide operations for relative units, that is, units
// that have a meaningful relation between values such that a += b is a
// sensible thing to do. For a,b <- same unit.
template <class Unit_T>
class RelativeUnit : public UnitBase<Unit_T> {
public:
constexpr Unit_T Clamped(Unit_T min_value, Unit_T max_value) const {
return std::max(min_value,
std::min(UnitBase<Unit_T>::AsSubClassRef(), max_value));
}
constexpr void Clamp(Unit_T min_value, Unit_T max_value) {
*this = Clamped(min_value, max_value);
}
constexpr Unit_T operator+(const Unit_T other) const {
if (this->IsPlusInfinity() || other.IsPlusInfinity()) {
RTC_DCHECK(!this->IsMinusInfinity());
RTC_DCHECK(!other.IsMinusInfinity());
return this->PlusInfinity();
} else if (this->IsMinusInfinity() || other.IsMinusInfinity()) {
RTC_DCHECK(!this->IsPlusInfinity());
RTC_DCHECK(!other.IsPlusInfinity());
return this->MinusInfinity();
}
return UnitBase<Unit_T>::FromValue(this->ToValue() + other.ToValue());
}
constexpr Unit_T operator-(const Unit_T other) const {
if (this->IsPlusInfinity() || other.IsMinusInfinity()) {
RTC_DCHECK(!this->IsMinusInfinity());
RTC_DCHECK(!other.IsPlusInfinity());
return this->PlusInfinity();
} else if (this->IsMinusInfinity() || other.IsPlusInfinity()) {
RTC_DCHECK(!this->IsPlusInfinity());
RTC_DCHECK(!other.IsMinusInfinity());
return this->MinusInfinity();
}
return UnitBase<Unit_T>::FromValue(this->ToValue() - other.ToValue());
}
constexpr Unit_T& operator+=(const Unit_T other) {
*this = *this + other;
return this->AsSubClassRef();
}
constexpr Unit_T& operator-=(const Unit_T other) {
*this = *this - other;
return this->AsSubClassRef();
}
constexpr double operator/(const Unit_T other) const {
return UnitBase<Unit_T>::template ToValue<double>() /
other.template ToValue<double>();
}
template <typename T>
constexpr typename std::enable_if<std::is_arithmetic<T>::value, Unit_T>::type
operator/(const T& scalar) const {
return UnitBase<Unit_T>::FromValue(
std::round(UnitBase<Unit_T>::template ToValue<int64_t>() / scalar));
}
constexpr Unit_T operator*(double scalar) const {
return UnitBase<Unit_T>::FromValue(std::round(this->ToValue() * scalar));
}
constexpr Unit_T operator*(int64_t scalar) const {
return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
}
constexpr Unit_T operator*(int32_t scalar) const {
return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
}
protected:
using UnitBase<Unit_T>::UnitBase;
};
template <class Unit_T>
inline constexpr Unit_T operator*(double scalar, RelativeUnit<Unit_T> other) {
return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator*(int64_t scalar, RelativeUnit<Unit_T> other) {
return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator*(int32_t scalar, RelativeUnit<Unit_T> other) {
return other * scalar;
}
} // namespace rtc_units_impl
} // namespace webrtc
#endif // RTC_BASE_UNITS_UNIT_BASE_H_