653 lines
17 KiB
C
653 lines
17 KiB
C
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This package is an SSL implementation written
|
||
|
* by Eric Young (eay@cryptsoft.com).
|
||
|
* The implementation was written so as to conform with Netscapes SSL.
|
||
|
*
|
||
|
* This library is free for commercial and non-commercial use as long as
|
||
|
* the following conditions are aheared to. The following conditions
|
||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
|
* included with this distribution is covered by the same copyright terms
|
||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
|
* the code are not to be removed.
|
||
|
* If this package is used in a product, Eric Young should be given attribution
|
||
|
* as the author of the parts of the library used.
|
||
|
* This can be in the form of a textual message at program startup or
|
||
|
* in documentation (online or textual) provided with the package.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* "This product includes cryptographic software written by
|
||
|
* Eric Young (eay@cryptsoft.com)"
|
||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
||
|
* being used are not cryptographic related :-).
|
||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
|
* the apps directory (application code) you must include an acknowledgement:
|
||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* The licence and distribution terms for any publically available version or
|
||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
|
* copied and put under another distribution licence
|
||
|
* [including the GNU Public Licence.] */
|
||
|
|
||
|
#include <openssl/cipher.h>
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <openssl/err.h>
|
||
|
#include <openssl/mem.h>
|
||
|
#include <openssl/obj.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
|
||
|
|
||
|
const EVP_CIPHER *EVP_get_cipherbynid(int nid) {
|
||
|
switch (nid) {
|
||
|
case NID_rc2_cbc:
|
||
|
return EVP_rc2_cbc();
|
||
|
case NID_rc2_40_cbc:
|
||
|
return EVP_rc2_40_cbc();
|
||
|
case NID_des_ede3_cbc:
|
||
|
return EVP_des_ede3_cbc();
|
||
|
case NID_des_ede_cbc:
|
||
|
return EVP_des_cbc();
|
||
|
case NID_aes_128_cbc:
|
||
|
return EVP_aes_128_cbc();
|
||
|
case NID_aes_192_cbc:
|
||
|
return EVP_aes_192_cbc();
|
||
|
case NID_aes_256_cbc:
|
||
|
return EVP_aes_256_cbc();
|
||
|
default:
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) {
|
||
|
memset(ctx, 0, sizeof(EVP_CIPHER_CTX));
|
||
|
}
|
||
|
|
||
|
EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) {
|
||
|
EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX));
|
||
|
if (ctx) {
|
||
|
EVP_CIPHER_CTX_init(ctx);
|
||
|
}
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) {
|
||
|
if (c->cipher != NULL) {
|
||
|
if (c->cipher->cleanup) {
|
||
|
c->cipher->cleanup(c);
|
||
|
}
|
||
|
OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size);
|
||
|
}
|
||
|
OPENSSL_free(c->cipher_data);
|
||
|
|
||
|
memset(c, 0, sizeof(EVP_CIPHER_CTX));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) {
|
||
|
if (ctx) {
|
||
|
EVP_CIPHER_CTX_cleanup(ctx);
|
||
|
OPENSSL_free(ctx);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) {
|
||
|
if (in == NULL || in->cipher == NULL) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
EVP_CIPHER_CTX_cleanup(out);
|
||
|
memcpy(out, in, sizeof(EVP_CIPHER_CTX));
|
||
|
|
||
|
if (in->cipher_data && in->cipher->ctx_size) {
|
||
|
out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size);
|
||
|
if (!out->cipher_data) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size);
|
||
|
}
|
||
|
|
||
|
if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
|
||
|
return in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out);
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
|
||
|
ENGINE *engine, const uint8_t *key, const uint8_t *iv,
|
||
|
int enc) {
|
||
|
if (enc == -1) {
|
||
|
enc = ctx->encrypt;
|
||
|
} else {
|
||
|
if (enc) {
|
||
|
enc = 1;
|
||
|
}
|
||
|
ctx->encrypt = enc;
|
||
|
}
|
||
|
|
||
|
if (cipher) {
|
||
|
/* Ensure a context left from last time is cleared (the previous check
|
||
|
* attempted to avoid this if the same ENGINE and EVP_CIPHER could be
|
||
|
* used). */
|
||
|
if (ctx->cipher) {
|
||
|
EVP_CIPHER_CTX_cleanup(ctx);
|
||
|
/* Restore encrypt and flags */
|
||
|
ctx->encrypt = enc;
|
||
|
}
|
||
|
|
||
|
ctx->cipher = cipher;
|
||
|
if (ctx->cipher->ctx_size) {
|
||
|
ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size);
|
||
|
if (!ctx->cipher_data) {
|
||
|
ctx->cipher = NULL;
|
||
|
OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
} else {
|
||
|
ctx->cipher_data = NULL;
|
||
|
}
|
||
|
|
||
|
ctx->key_len = cipher->key_len;
|
||
|
ctx->flags = 0;
|
||
|
|
||
|
if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
|
||
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
|
||
|
ctx->cipher = NULL;
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
} else if (!ctx->cipher) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* we assume block size is a power of 2 in *cryptUpdate */
|
||
|
assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 ||
|
||
|
ctx->cipher->block_size == 16);
|
||
|
|
||
|
if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
|
||
|
switch (EVP_CIPHER_CTX_mode(ctx)) {
|
||
|
case EVP_CIPH_STREAM_CIPHER:
|
||
|
case EVP_CIPH_ECB_MODE:
|
||
|
break;
|
||
|
|
||
|
case EVP_CIPH_CFB_MODE:
|
||
|
ctx->num = 0;
|
||
|
/* fall-through */
|
||
|
|
||
|
case EVP_CIPH_CBC_MODE:
|
||
|
assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
|
||
|
if (iv) {
|
||
|
memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
|
||
|
}
|
||
|
memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
|
||
|
break;
|
||
|
|
||
|
case EVP_CIPH_CTR_MODE:
|
||
|
case EVP_CIPH_OFB_MODE:
|
||
|
ctx->num = 0;
|
||
|
/* Don't reuse IV for CTR mode */
|
||
|
if (iv) {
|
||
|
memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
|
||
|
if (!ctx->cipher->init(ctx, key, iv, enc)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ctx->buf_len = 0;
|
||
|
ctx->final_used = 0;
|
||
|
ctx->block_mask = ctx->cipher->block_size - 1;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
|
||
|
ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
|
||
|
return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
|
||
|
}
|
||
|
|
||
|
int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
|
||
|
ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
|
||
|
return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
|
||
|
}
|
||
|
|
||
|
int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
|
||
|
const uint8_t *in, int in_len) {
|
||
|
int i, j, bl;
|
||
|
|
||
|
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
|
||
|
i = ctx->cipher->cipher(ctx, out, in, in_len);
|
||
|
if (i < 0) {
|
||
|
return 0;
|
||
|
} else {
|
||
|
*out_len = i;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (in_len <= 0) {
|
||
|
*out_len = 0;
|
||
|
return in_len == 0;
|
||
|
}
|
||
|
|
||
|
if (ctx->buf_len == 0 && (in_len & ctx->block_mask) == 0) {
|
||
|
if (ctx->cipher->cipher(ctx, out, in, in_len)) {
|
||
|
*out_len = in_len;
|
||
|
return 1;
|
||
|
} else {
|
||
|
*out_len = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
i = ctx->buf_len;
|
||
|
bl = ctx->cipher->block_size;
|
||
|
assert(bl <= (int)sizeof(ctx->buf));
|
||
|
if (i != 0) {
|
||
|
if (i + in_len < bl) {
|
||
|
memcpy(&ctx->buf[i], in, in_len);
|
||
|
ctx->buf_len += in_len;
|
||
|
*out_len = 0;
|
||
|
return 1;
|
||
|
} else {
|
||
|
j = bl - i;
|
||
|
memcpy(&ctx->buf[i], in, j);
|
||
|
if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) {
|
||
|
return 0;
|
||
|
}
|
||
|
in_len -= j;
|
||
|
in += j;
|
||
|
out += bl;
|
||
|
*out_len = bl;
|
||
|
}
|
||
|
} else {
|
||
|
*out_len = 0;
|
||
|
}
|
||
|
|
||
|
i = in_len & ctx->block_mask;
|
||
|
in_len -= i;
|
||
|
if (in_len > 0) {
|
||
|
if (!ctx->cipher->cipher(ctx, out, in, in_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
*out_len += in_len;
|
||
|
}
|
||
|
|
||
|
if (i != 0) {
|
||
|
memcpy(ctx->buf, &in[in_len], i);
|
||
|
}
|
||
|
ctx->buf_len = i;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
|
||
|
int n, ret;
|
||
|
unsigned int i, b, bl;
|
||
|
|
||
|
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
|
||
|
ret = ctx->cipher->cipher(ctx, out, NULL, 0);
|
||
|
if (ret < 0) {
|
||
|
return 0;
|
||
|
} else {
|
||
|
*out_len = ret;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
b = ctx->cipher->block_size;
|
||
|
assert(b <= sizeof(ctx->buf));
|
||
|
if (b == 1) {
|
||
|
*out_len = 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
bl = ctx->buf_len;
|
||
|
if (ctx->flags & EVP_CIPH_NO_PADDING) {
|
||
|
if (bl) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
|
||
|
return 0;
|
||
|
}
|
||
|
*out_len = 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
n = b - bl;
|
||
|
for (i = bl; i < b; i++) {
|
||
|
ctx->buf[i] = n;
|
||
|
}
|
||
|
ret = ctx->cipher->cipher(ctx, out, ctx->buf, b);
|
||
|
|
||
|
if (ret) {
|
||
|
*out_len = b;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
|
||
|
const uint8_t *in, int in_len) {
|
||
|
int fix_len;
|
||
|
unsigned int b;
|
||
|
|
||
|
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
|
||
|
int r = ctx->cipher->cipher(ctx, out, in, in_len);
|
||
|
if (r < 0) {
|
||
|
*out_len = 0;
|
||
|
return 0;
|
||
|
} else {
|
||
|
*out_len = r;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (in_len <= 0) {
|
||
|
*out_len = 0;
|
||
|
return in_len == 0;
|
||
|
}
|
||
|
|
||
|
if (ctx->flags & EVP_CIPH_NO_PADDING) {
|
||
|
return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
|
||
|
}
|
||
|
|
||
|
b = ctx->cipher->block_size;
|
||
|
assert(b <= sizeof(ctx->final));
|
||
|
|
||
|
if (ctx->final_used) {
|
||
|
memcpy(out, ctx->final, b);
|
||
|
out += b;
|
||
|
fix_len = 1;
|
||
|
} else {
|
||
|
fix_len = 0;
|
||
|
}
|
||
|
|
||
|
if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* if we have 'decrypted' a multiple of block size, make sure
|
||
|
* we have a copy of this last block */
|
||
|
if (b > 1 && !ctx->buf_len) {
|
||
|
*out_len -= b;
|
||
|
ctx->final_used = 1;
|
||
|
memcpy(ctx->final, &out[*out_len], b);
|
||
|
} else {
|
||
|
ctx->final_used = 0;
|
||
|
}
|
||
|
|
||
|
if (fix_len) {
|
||
|
*out_len += b;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) {
|
||
|
int i, n;
|
||
|
unsigned int b;
|
||
|
*out_len = 0;
|
||
|
|
||
|
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
|
||
|
i = ctx->cipher->cipher(ctx, out, NULL, 0);
|
||
|
if (i < 0) {
|
||
|
return 0;
|
||
|
} else {
|
||
|
*out_len = i;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
b = ctx->cipher->block_size;
|
||
|
if (ctx->flags & EVP_CIPH_NO_PADDING) {
|
||
|
if (ctx->buf_len) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
|
||
|
return 0;
|
||
|
}
|
||
|
*out_len = 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (b > 1) {
|
||
|
if (ctx->buf_len || !ctx->final_used) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH);
|
||
|
return 0;
|
||
|
}
|
||
|
assert(b <= sizeof(ctx->final));
|
||
|
|
||
|
/* The following assumes that the ciphertext has been authenticated.
|
||
|
* Otherwise it provides a padding oracle. */
|
||
|
n = ctx->final[b - 1];
|
||
|
if (n == 0 || n > (int)b) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
if (ctx->final[--b] != n) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
n = ctx->cipher->block_size - n;
|
||
|
for (i = 0; i < n; i++) {
|
||
|
out[i] = ctx->final[i];
|
||
|
}
|
||
|
*out_len = n;
|
||
|
} else {
|
||
|
*out_len = 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t in_len) {
|
||
|
return ctx->cipher->cipher(ctx, out, in, in_len);
|
||
|
}
|
||
|
|
||
|
int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
|
||
|
const uint8_t *in, int in_len) {
|
||
|
if (ctx->encrypt) {
|
||
|
return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
|
||
|
} else {
|
||
|
return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
|
||
|
if (ctx->encrypt) {
|
||
|
return EVP_EncryptFinal_ex(ctx, out, out_len);
|
||
|
} else {
|
||
|
return EVP_DecryptFinal_ex(ctx, out, out_len);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) {
|
||
|
return ctx->cipher;
|
||
|
}
|
||
|
|
||
|
int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) {
|
||
|
return ctx->cipher->nid;
|
||
|
}
|
||
|
|
||
|
unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) {
|
||
|
return ctx->cipher->block_size;
|
||
|
}
|
||
|
|
||
|
unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) {
|
||
|
return ctx->key_len;
|
||
|
}
|
||
|
|
||
|
unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) {
|
||
|
return ctx->cipher->iv_len;
|
||
|
}
|
||
|
|
||
|
void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) {
|
||
|
return ctx->app_data;
|
||
|
}
|
||
|
|
||
|
void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) {
|
||
|
ctx->app_data = data;
|
||
|
}
|
||
|
|
||
|
uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) {
|
||
|
return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK;
|
||
|
}
|
||
|
|
||
|
uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) {
|
||
|
return ctx->cipher->flags & EVP_CIPH_MODE_MASK;
|
||
|
}
|
||
|
|
||
|
int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) {
|
||
|
int ret;
|
||
|
if (!ctx->cipher) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (!ctx->cipher->ctrl) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ret = ctx->cipher->ctrl(ctx, command, arg, ptr);
|
||
|
if (ret == -1) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) {
|
||
|
if (pad) {
|
||
|
ctx->flags &= ~EVP_CIPH_NO_PADDING;
|
||
|
} else {
|
||
|
ctx->flags |= EVP_CIPH_NO_PADDING;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) {
|
||
|
if (c->key_len == key_len) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
|
||
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
c->key_len = key_len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; }
|
||
|
|
||
|
unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) {
|
||
|
return cipher->block_size;
|
||
|
}
|
||
|
|
||
|
unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) {
|
||
|
return cipher->key_len;
|
||
|
}
|
||
|
|
||
|
unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) {
|
||
|
return cipher->iv_len;
|
||
|
}
|
||
|
|
||
|
uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) {
|
||
|
return cipher->flags & ~EVP_CIPH_MODE_MASK;
|
||
|
}
|
||
|
|
||
|
uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) {
|
||
|
return cipher->flags & EVP_CIPH_MODE_MASK;
|
||
|
}
|
||
|
|
||
|
int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
|
||
|
const uint8_t *key, const uint8_t *iv, int enc) {
|
||
|
if (cipher) {
|
||
|
EVP_CIPHER_CTX_init(ctx);
|
||
|
}
|
||
|
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
|
||
|
}
|
||
|
|
||
|
int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
|
||
|
const uint8_t *key, const uint8_t *iv) {
|
||
|
return EVP_CipherInit(ctx, cipher, key, iv, 1);
|
||
|
}
|
||
|
|
||
|
int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
|
||
|
const uint8_t *key, const uint8_t *iv) {
|
||
|
return EVP_CipherInit(ctx, cipher, key, iv, 0);
|
||
|
}
|
||
|
|
||
|
int EVP_add_cipher_alias(const char *a, const char *b) {
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
const EVP_CIPHER *EVP_get_cipherbyname(const char *name) {
|
||
|
if (OPENSSL_strcasecmp(name, "rc4") == 0) {
|
||
|
return EVP_rc4();
|
||
|
} else if (OPENSSL_strcasecmp(name, "des-cbc") == 0) {
|
||
|
return EVP_des_cbc();
|
||
|
} else if (OPENSSL_strcasecmp(name, "des-ede3-cbc") == 0 ||
|
||
|
OPENSSL_strcasecmp(name, "3des") == 0) {
|
||
|
return EVP_des_ede3_cbc();
|
||
|
} else if (OPENSSL_strcasecmp(name, "aes-128-cbc") == 0) {
|
||
|
return EVP_aes_128_cbc();
|
||
|
} else if (OPENSSL_strcasecmp(name, "aes-256-cbc") == 0) {
|
||
|
return EVP_aes_256_cbc();
|
||
|
} else if (OPENSSL_strcasecmp(name, "aes-128-ctr") == 0) {
|
||
|
return EVP_aes_128_ctr();
|
||
|
} else if (OPENSSL_strcasecmp(name, "aes-256-ctr") == 0) {
|
||
|
return EVP_aes_256_ctr();
|
||
|
} else if (OPENSSL_strcasecmp(name, "aes-128-ecb") == 0) {
|
||
|
return EVP_aes_128_ecb();
|
||
|
} else if (OPENSSL_strcasecmp(name, "aes-256-ecb") == 0) {
|
||
|
return EVP_aes_256_ecb();
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|