299 lines
12 KiB
C
299 lines
12 KiB
C
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This package is an SSL implementation written
|
||
|
* by Eric Young (eay@cryptsoft.com).
|
||
|
* The implementation was written so as to conform with Netscapes SSL.
|
||
|
*
|
||
|
* This library is free for commercial and non-commercial use as long as
|
||
|
* the following conditions are aheared to. The following conditions
|
||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
|
* included with this distribution is covered by the same copyright terms
|
||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
|
* the code are not to be removed.
|
||
|
* If this package is used in a product, Eric Young should be given attribution
|
||
|
* as the author of the parts of the library used.
|
||
|
* This can be in the form of a textual message at program startup or
|
||
|
* in documentation (online or textual) provided with the package.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* "This product includes cryptographic software written by
|
||
|
* Eric Young (eay@cryptsoft.com)"
|
||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
||
|
* being used are not cryptographic related :-).
|
||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
|
* the apps directory (application code) you must include an acknowledgement:
|
||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* The licence and distribution terms for any publically available version or
|
||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
|
* copied and put under another distribution licence
|
||
|
* [including the GNU Public Licence.] */
|
||
|
|
||
|
#ifndef OPENSSL_HEADER_STACK_H
|
||
|
#define OPENSSL_HEADER_STACK_H
|
||
|
|
||
|
#include <openssl/base.h>
|
||
|
|
||
|
#include <openssl/type_check.h>
|
||
|
|
||
|
#if defined(__cplusplus)
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* A stack, in OpenSSL, is an array of pointers. They are the most commonly
|
||
|
* used collection object.
|
||
|
*
|
||
|
* This file defines macros for type safe use of the stack functions. A stack
|
||
|
* of a specific type of object has type |STACK_OF(type)|. This can be defined
|
||
|
* (once) with |DEFINE_STACK_OF(type)| and declared where needed with
|
||
|
* |DECLARE_STACK_OF(type)|. For example:
|
||
|
*
|
||
|
* struct foo {
|
||
|
* int bar;
|
||
|
* };
|
||
|
*
|
||
|
* DEFINE_STACK_OF(struct foo);
|
||
|
*
|
||
|
* Although note that the stack will contain /pointers/ to |foo|.
|
||
|
*
|
||
|
* A macro will be defined for each of the sk_* functions below. For
|
||
|
* STACK_OF(foo), the macros would be sk_foo_new, sk_foo_pop etc. */
|
||
|
|
||
|
|
||
|
/* stack_cmp_func is a comparison function that returns a value < 0, 0 or > 0
|
||
|
* if |*a| is less than, equal to or greater than |*b|, respectively. Note the
|
||
|
* extra indirection - the function is given a pointer to a pointer to the
|
||
|
* element. This differs from the usual qsort/bsearch comparison function. */
|
||
|
typedef int (*stack_cmp_func)(const void **a, const void **b);
|
||
|
|
||
|
/* stack_st contains an array of pointers. It is not designed to be used
|
||
|
* directly, rather the wrapper macros should be used. */
|
||
|
typedef struct stack_st {
|
||
|
/* num contains the number of valid pointers in |data|. */
|
||
|
size_t num;
|
||
|
void **data;
|
||
|
/* sorted is non-zero if the values pointed to by |data| are in ascending
|
||
|
* order, based on |comp|. */
|
||
|
size_t sorted;
|
||
|
/* num_alloc contains the number of pointers allocated in the buffer pointed
|
||
|
* to by |data|, which may be larger than |num|. */
|
||
|
size_t num_alloc;
|
||
|
/* comp is an optional comparison function. */
|
||
|
stack_cmp_func comp;
|
||
|
} _STACK;
|
||
|
|
||
|
|
||
|
#define STACK_OF(type) struct stack_st_##type
|
||
|
|
||
|
#define DECLARE_STACK_OF(type) STACK_OF(type);
|
||
|
|
||
|
/* The make_macros.sh script in this directory parses the following lines and
|
||
|
* generates the stack_macros.h file that contains macros for the following
|
||
|
* types of stacks:
|
||
|
*
|
||
|
* STACK_OF:ACCESS_DESCRIPTION
|
||
|
* STACK_OF:ASN1_ADB_TABLE
|
||
|
* STACK_OF:ASN1_GENERALSTRING
|
||
|
* STACK_OF:ASN1_INTEGER
|
||
|
* STACK_OF:ASN1_OBJECT
|
||
|
* STACK_OF:ASN1_STRING_TABLE
|
||
|
* STACK_OF:ASN1_TYPE
|
||
|
* STACK_OF:ASN1_VALUE
|
||
|
* STACK_OF:BIO
|
||
|
* STACK_OF:BY_DIR_ENTRY
|
||
|
* STACK_OF:BY_DIR_HASH
|
||
|
* STACK_OF:CONF_VALUE
|
||
|
* STACK_OF:CRYPTO_EX_DATA_FUNCS
|
||
|
* STACK_OF:DIST_POINT
|
||
|
* STACK_OF:GENERAL_NAME
|
||
|
* STACK_OF:GENERAL_NAMES
|
||
|
* STACK_OF:GENERAL_SUBTREE
|
||
|
* STACK_OF:MIME_HEADER
|
||
|
* STACK_OF:PKCS7_RECIP_INFO
|
||
|
* STACK_OF:PKCS7_SIGNER_INFO
|
||
|
* STACK_OF:POLICYINFO
|
||
|
* STACK_OF:POLICYQUALINFO
|
||
|
* STACK_OF:POLICY_MAPPING
|
||
|
* STACK_OF:RSA_additional_prime
|
||
|
* STACK_OF:SSL_COMP
|
||
|
* STACK_OF:SSL_CUSTOM_EXTENSION
|
||
|
* STACK_OF:STACK_OF_X509_NAME_ENTRY
|
||
|
* STACK_OF:SXNETID
|
||
|
* STACK_OF:X509
|
||
|
* STACK_OF:X509V3_EXT_METHOD
|
||
|
* STACK_OF:X509_ALGOR
|
||
|
* STACK_OF:X509_ATTRIBUTE
|
||
|
* STACK_OF:X509_CRL
|
||
|
* STACK_OF:X509_EXTENSION
|
||
|
* STACK_OF:X509_INFO
|
||
|
* STACK_OF:X509_LOOKUP
|
||
|
* STACK_OF:X509_NAME
|
||
|
* STACK_OF:X509_NAME_ENTRY
|
||
|
* STACK_OF:X509_OBJECT
|
||
|
* STACK_OF:X509_POLICY_DATA
|
||
|
* STACK_OF:X509_POLICY_NODE
|
||
|
* STACK_OF:X509_PURPOSE
|
||
|
* STACK_OF:X509_REVOKED
|
||
|
* STACK_OF:X509_TRUST
|
||
|
* STACK_OF:X509_VERIFY_PARAM
|
||
|
* STACK_OF:void
|
||
|
*
|
||
|
* Some stacks contain only const structures, so the stack should return const
|
||
|
* pointers to retain type-checking.
|
||
|
*
|
||
|
* CONST_STACK_OF:SRTP_PROTECTION_PROFILE
|
||
|
* CONST_STACK_OF:SSL_CIPHER */
|
||
|
|
||
|
|
||
|
/* Some stacks are special because, although we would like STACK_OF(char *),
|
||
|
* that would actually be a stack of pointers to char*, but we just want to
|
||
|
* point to the string directly. In this case we call them "special" and use
|
||
|
* |DEFINE_SPECIAL_STACK_OF(type)| */
|
||
|
#define DEFINE_SPECIAL_STACK_OF(type, inner) \
|
||
|
STACK_OF(type) { _STACK special_stack; }; \
|
||
|
OPENSSL_COMPILE_ASSERT(sizeof(type) == sizeof(void *), \
|
||
|
special_stack_of_non_pointer_##type);
|
||
|
|
||
|
typedef char *OPENSSL_STRING;
|
||
|
|
||
|
DEFINE_SPECIAL_STACK_OF(OPENSSL_STRING, char)
|
||
|
DEFINE_SPECIAL_STACK_OF(OPENSSL_BLOCK, uint8_t)
|
||
|
|
||
|
/* The make_macros.sh script in this directory parses the following lines and
|
||
|
* generates the stack_macros.h file that contains macros for the following
|
||
|
* types of stacks:
|
||
|
*
|
||
|
* SPECIAL_STACK_OF:OPENSSL_STRING
|
||
|
* SPECIAL_STACK_OF:OPENSSL_BLOCK */
|
||
|
|
||
|
#define IN_STACK_H
|
||
|
#include <openssl/stack_macros.h>
|
||
|
#undef IN_STACK_H
|
||
|
|
||
|
|
||
|
/* These are the raw stack functions, you shouldn't be using them. Rather you
|
||
|
* should be using the type stack macros implemented above. */
|
||
|
|
||
|
/* sk_new creates a new, empty stack with the given comparison function, which
|
||
|
* may be zero. It returns the new stack or NULL on allocation failure. */
|
||
|
OPENSSL_EXPORT _STACK *sk_new(stack_cmp_func comp);
|
||
|
|
||
|
/* sk_new_null creates a new, empty stack. It returns the new stack or NULL on
|
||
|
* allocation failure. */
|
||
|
OPENSSL_EXPORT _STACK *sk_new_null(void);
|
||
|
|
||
|
/* sk_num returns the number of elements in |s|. */
|
||
|
OPENSSL_EXPORT size_t sk_num(const _STACK *sk);
|
||
|
|
||
|
/* sk_zero resets |sk| to the empty state but does nothing to free the
|
||
|
* individual elements themselves. */
|
||
|
OPENSSL_EXPORT void sk_zero(_STACK *sk);
|
||
|
|
||
|
/* sk_value returns the |i|th pointer in |sk|, or NULL if |i| is out of
|
||
|
* range. */
|
||
|
OPENSSL_EXPORT void *sk_value(const _STACK *sk, size_t i);
|
||
|
|
||
|
/* sk_set sets the |i|th pointer in |sk| to |p| and returns |p|. If |i| is out
|
||
|
* of range, it returns NULL. */
|
||
|
OPENSSL_EXPORT void *sk_set(_STACK *sk, size_t i, void *p);
|
||
|
|
||
|
/* sk_free frees the given stack and array of pointers, but does nothing to
|
||
|
* free the individual elements. Also see |sk_pop_free|. */
|
||
|
OPENSSL_EXPORT void sk_free(_STACK *sk);
|
||
|
|
||
|
/* sk_pop_free calls |free_func| on each element in the stack and then frees
|
||
|
* the stack itself. */
|
||
|
OPENSSL_EXPORT void sk_pop_free(_STACK *sk, void (*free_func)(void *));
|
||
|
|
||
|
/* sk_insert inserts |p| into the stack at index |where|, moving existing
|
||
|
* elements if needed. It returns the length of the new stack, or zero on
|
||
|
* error. */
|
||
|
OPENSSL_EXPORT size_t sk_insert(_STACK *sk, void *p, size_t where);
|
||
|
|
||
|
/* sk_delete removes the pointer at index |where|, moving other elements down
|
||
|
* if needed. It returns the removed pointer, or NULL if |where| is out of
|
||
|
* range. */
|
||
|
OPENSSL_EXPORT void *sk_delete(_STACK *sk, size_t where);
|
||
|
|
||
|
/* sk_delete_ptr removes, at most, one instance of |p| from the stack based on
|
||
|
* pointer equality. If an instance of |p| is found then |p| is returned,
|
||
|
* otherwise it returns NULL. */
|
||
|
OPENSSL_EXPORT void *sk_delete_ptr(_STACK *sk, void *p);
|
||
|
|
||
|
/* sk_find returns the first value in the stack equal to |p|. If a comparison
|
||
|
* function has been set on the stack, then equality is defined by it and the
|
||
|
* stack will be sorted if need be so that a binary search can be used.
|
||
|
* Otherwise pointer equality is used. If a matching element is found, its
|
||
|
* index is written to |*out_index| (if |out_index| is not NULL) and one is
|
||
|
* returned. Otherwise zero is returned. */
|
||
|
OPENSSL_EXPORT int sk_find(_STACK *sk, size_t *out_index, void *p);
|
||
|
|
||
|
/* sk_shift removes and returns the first element in the stack, or returns NULL
|
||
|
* if the stack is empty. */
|
||
|
OPENSSL_EXPORT void *sk_shift(_STACK *sk);
|
||
|
|
||
|
/* sk_push appends |p| to the stack and returns the length of the new stack, or
|
||
|
* 0 on allocation failure. */
|
||
|
OPENSSL_EXPORT size_t sk_push(_STACK *sk, void *p);
|
||
|
|
||
|
/* sk_pop returns and removes the last element on the stack, or NULL if the
|
||
|
* stack is empty. */
|
||
|
OPENSSL_EXPORT void *sk_pop(_STACK *sk);
|
||
|
|
||
|
/* sk_dup performs a shallow copy of a stack and returns the new stack, or NULL
|
||
|
* on error. */
|
||
|
OPENSSL_EXPORT _STACK *sk_dup(const _STACK *sk);
|
||
|
|
||
|
/* sk_sort sorts the elements of |sk| into ascending order based on the
|
||
|
* comparison function. The stack maintains a |sorted| flag and sorting an
|
||
|
* already sorted stack is a no-op. */
|
||
|
OPENSSL_EXPORT void sk_sort(_STACK *sk);
|
||
|
|
||
|
/* sk_is_sorted returns one if |sk| is known to be sorted and zero
|
||
|
* otherwise. */
|
||
|
OPENSSL_EXPORT int sk_is_sorted(const _STACK *sk);
|
||
|
|
||
|
/* sk_set_cmp_func sets the comparison function to be used by |sk| and returns
|
||
|
* the previous one. */
|
||
|
OPENSSL_EXPORT stack_cmp_func sk_set_cmp_func(_STACK *sk, stack_cmp_func comp);
|
||
|
|
||
|
/* sk_deep_copy performs a copy of |sk| and of each of the non-NULL elements in
|
||
|
* |sk| by using |copy_func|. If an error occurs, |free_func| is used to free
|
||
|
* any copies already made and NULL is returned. */
|
||
|
OPENSSL_EXPORT _STACK *sk_deep_copy(const _STACK *sk,
|
||
|
void *(*copy_func)(void *),
|
||
|
void (*free_func)(void *));
|
||
|
|
||
|
|
||
|
#if defined(__cplusplus)
|
||
|
} /* extern C */
|
||
|
#endif
|
||
|
|
||
|
#endif /* OPENSSL_HEADER_STACK_H */
|