#ifndef SSE2NEON_H_ #define SSE2NEON_H_ #ifndef SSE2NEON_H #define SSE2NEON_H // This header file provides a simple API translation layer // between SSE intrinsics to their corresponding ARM NEON versions // // This header file does not (yet) translate *all* of the SSE intrinsics. // Since this is in support of a specific porting effort, I have only // included the intrinsics I needed to get my port to work. // // Questions/Comments/Feedback send to: jratcliffscarab@gmail.com // // If you want to improve or add to this project, send me an // email and I will probably approve your access to the depot. // // Project is located here: // // https://github.com/jratcliff63367/sse2neon // // Show your appreciation for open source by sending me a bitcoin tip to the following // address. // // TipJar: 1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p : // https://blockchain.info/address/1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p // // // Contributors to this project are: // // John W. Ratcliff : jratcliffscarab@gmail.com // Brandon Rowlett : browlett@nvidia.com // Ken Fast : kfast@gdeb.com // // /* ** The MIT license: ** ** Permission is hereby granted, MEMALLOC_FREE of charge, to any person obtaining a copy ** of this software and associated documentation files (the "Software"), to deal ** in the Software without restriction, including without limitation the rights ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ** copies of the Software, and to permit persons to whom the Software is furnished ** to do so, subject to the following conditions: ** ** The above copyright notice and this permission notice shall be included in all ** copies or substantial portions of the Software. ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, ** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN ** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define GCC 1 #define ENABLE_CPP_VERSION 0 #if GCC #define FORCE_INLINE inline __attribute__((always_inline)) #else #define FORCE_INLINE inline #endif #include "arm_neon.h" /*******************************************************/ /* MACRO for shuffle parameter for _mm_shuffle_ps(). */ /* Argument fp3 is a digit[0123] that represents the fp*/ /* from argument "b" of mm_shuffle_ps that will be */ /* placed in fp3 of result. fp2 is the same for fp2 in */ /* result. fp1 is a digit[0123] that represents the fp */ /* from argument "a" of mm_shuffle_ps that will be */ /* places in fp1 of result. fp0 is the same for fp0 of */ /* result */ /*******************************************************/ #define _MM_SHUFFLE(fp3,fp2,fp1,fp0) (((fp3) << 6) | ((fp2) << 4) | \ ((fp1) << 2) | ((fp0))) typedef float32x4_t __m128; typedef int32x4_t __m128i; // ****************************************** // Set/get methods // ****************************************** // Sets the 128-bit value to zero https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx FORCE_INLINE __m128i _mm_setzero_si128() { return vdupq_n_s32(0); } // Clears the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx FORCE_INLINE __m128 _mm_setzero_ps(void) { return vdupq_n_f32(0); } // Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx FORCE_INLINE __m128 _mm_set1_ps(float _w) { return vdupq_n_f32(_w); } // Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx FORCE_INLINE __m128 _mm_set_ps1(float _w) { return vdupq_n_f32(_w); } // Sets the four single-precision, floating-point values to the four inputs. https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) { float __attribute__((aligned(16))) data[4] = { x, y, z, w }; return vld1q_f32(data); } // Sets the four single-precision, floating-point values to the four inputs in reverse order. https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx FORCE_INLINE __m128 _mm_setr_ps(float w, float z , float y , float x ) { float __attribute__ ((aligned (16))) data[4] = { w, z, y, x }; return vld1q_f32(data); } // Sets the 4 signed 32-bit integer values to i. https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx FORCE_INLINE __m128i _mm_set1_epi32(int _i) { return vdupq_n_s32(_i); } // Sets the 4 signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) { int32_t __attribute__((aligned(16))) data[4] = { i0, i1, i2, i3 }; return vld1q_s32(data); } // Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx FORCE_INLINE void _mm_store_ps(float *p, __m128 a) { vst1q_f32(p, a); } // Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) { vst1q_f32(p, a); } // Stores four 32-bit integer values as (as a __m128i value) at the address p. https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a ) { vst1q_s32((int32_t*) p,a); } // Stores the lower single - precision, floating - point value. https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx FORCE_INLINE void _mm_store_ss(float *p, __m128 a) { vst1q_lane_f32(p, a, 0); } // Reads the lower 64 bits of b and stores them into the lower 64 bits of a. https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx FORCE_INLINE void _mm_storel_epi64(__m128i* a, __m128i b) { *a = (__m128i)vsetq_lane_s64((int64_t)vget_low_s32(b), *(int64x2_t*)a, 0); } // Loads a single single-precision, floating-point value, copying it into all four words https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx FORCE_INLINE __m128 _mm_load1_ps(const float * p) { return vld1q_dup_f32(p); } // Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx FORCE_INLINE __m128 _mm_load_ps(const float * p) { return vld1q_f32(p); } // Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_loadu_ps(const float * p) { // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are equivalent for neon return vld1q_f32(p); } // Loads an single - precision, floating - point value into the low word and clears the upper three words. https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_load_ss(const float * p) { __m128 result = vdupq_n_f32(0); return vsetq_lane_f32(*p, result, 0); } // ****************************************** // Logic/Binary operations // ****************************************** // Compares for inequality. https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) { return (__m128)vmvnq_s32((__m128i)vceqq_f32(a, b)); } // Computes the bitwise AND-NOT of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) { return (__m128)vbicq_s32((__m128i)b, (__m128i)a); // *NOTE* argument swap } // Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a. https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) { return (__m128i)vbicq_s32(b, a); // *NOTE* argument swap } // Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) { return (__m128i)vandq_s32(a, b); } // Computes the bitwise AND of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) { return (__m128)vandq_s32((__m128i)a, (__m128i)b); } // Computes the bitwise OR of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) { return (__m128)vorrq_s32((__m128i)a, (__m128i)b); } // Computes bitwise EXOR (exclusive-or) of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) { return (__m128)veorq_s32((__m128i)a, (__m128i)b); } // Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) { return (__m128i)vorrq_s32(a, b); } // Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) { return veorq_s32(a, b); } // NEON does not provide this method // Creates a 4-bit mask from the most significant bits of the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx FORCE_INLINE int _mm_movemask_ps(__m128 a) { #if ENABLE_CPP_VERSION // I am not yet convinced that the NEON version is faster than the C version of this uint32x4_t &ia = *(uint32x4_t *)&a; return (ia[0] >> 31) | ((ia[1] >> 30) & 2) | ((ia[2] >> 29) & 4) | ((ia[3] >> 28) & 8); #else static const uint32x4_t movemask = { 1, 2, 4, 8 }; static const uint32x4_t highbit = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; uint32x4_t t0 = vreinterpretq_u32_f32(a); uint32x4_t t1 = vtstq_u32(t0, highbit); uint32x4_t t2 = vandq_u32(t1, movemask); uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2)); return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1); #endif } // Takes the upper 64 bits of a and places it in the low end of the result // Takes the lower 64 bits of b and places it into the high end of the result. FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) { return vcombine_f32(vget_high_f32(a), vget_low_f32(b)); } // takes the lower two 32-bit values from a and swaps them and places in high end of result // takes the higher two 32 bit values from b and swaps them and places in low end of result. FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) { return vcombine_f32(vrev64_f32(vget_low_f32(a)), vrev64_f32(vget_high_f32(b))); } // keeps the low 64 bits of b in the low and puts the high 64 bits of a in the high FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) { return vcombine_f32(vget_low_f32(a), vget_high_f32(b)); } FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) { return vcombine_f32(vdup_n_f32(vgetq_lane_f32(a, 1)), vdup_n_f32(vgetq_lane_f32(b, 0))); } FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) { return vcombine_f32(vdup_n_f32(vgetq_lane_f32(a, 2)), vdup_n_f32(vgetq_lane_f32(b, 0))); } FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) { return vcombine_f32(vdup_n_f32(vgetq_lane_f32(a, 0)), vdup_n_f32(vgetq_lane_f32(b, 2))); } FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) { float32_t a0 = vgetq_lane_f32(a, 0); float32_t a2 = vgetq_lane_f32(a, 2); float32x2_t aVal = vdup_n_f32(a2); aVal = vset_lane_f32(a0, aVal, 1); return vcombine_f32(aVal, vget_high_f32(b)); } FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) { return vcombine_f32(vdup_n_f32(vgetq_lane_f32(a, 3)), vdup_n_f32(vgetq_lane_f32(b, 1))); } FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(b, 0); float32_t b2 = vgetq_lane_f32(b, 2); float32x2_t bVal = vdup_n_f32(b0); bVal = vset_lane_f32(b2, bVal, 1); return vcombine_f32(vget_low_f32(a), bVal); } FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(b, 0); float32_t b2 = vgetq_lane_f32(b, 2); float32x2_t bVal = vdup_n_f32(b0); bVal = vset_lane_f32(b2, bVal, 1); return vcombine_f32(vrev64_f32(vget_low_f32(a)), bVal); } FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(b, 0); float32_t b2 = vgetq_lane_f32(b, 2); float32x2_t bVal = vdup_n_f32(b0); bVal = vset_lane_f32(b2, bVal, 1); return vcombine_f32(vget_high_f32(a), bVal); } // NEON does not support a general purpose permute intrinsic // Currently I am not sure whether the C implementation is faster or slower than the NEON version. // Note, this has to be expanded as a template because the shuffle value must be an immediate value. // The same is true on SSE as well. // Selects four specific single-precision, floating-point values from a and b, based on the mask i. https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx template FORCE_INLINE __m128 _mm_shuffle_ps_default(__m128 a, __m128 b) { #if ENABLE_CPP_VERSION // I am not convinced that the NEON version is faster than the C version yet. __m128 ret; ret[0] = a[i & 0x3]; ret[1] = a[(i >> 2) & 0x3]; ret[2] = b[(i >> 4) & 0x03]; ret[3] = b[(i >> 6) & 0x03]; return ret; #else __m128 ret = vmovq_n_f32(vgetq_lane_f32(a, i & 0x3)); ret = vsetq_lane_f32(vgetq_lane_f32(a, (i >> 2) & 0x3), ret, 1); ret = vsetq_lane_f32(vgetq_lane_f32(b, (i >> 4) & 0x3), ret, 2); ret = vsetq_lane_f32(vgetq_lane_f32(b, (i >> 6) & 0x3), ret, 3); return ret; #endif } template FORCE_INLINE __m128 _mm_shuffle_ps_function(__m128 a, __m128 b) { switch (i) { case _MM_SHUFFLE(1, 0, 3, 2): return _mm_shuffle_ps_1032(a, b); break; case _MM_SHUFFLE(2, 3, 0, 1): return _mm_shuffle_ps_2301(a, b); break; case _MM_SHUFFLE(3, 2, 1, 0): return _mm_shuffle_ps_3210(a, b); break; case _MM_SHUFFLE(0, 0, 1, 1): return _mm_shuffle_ps_0011(a, b); break; case _MM_SHUFFLE(0, 0, 2, 2): return _mm_shuffle_ps_0022(a, b); break; case _MM_SHUFFLE(2, 2, 0, 0): return _mm_shuffle_ps_2200(a, b); break; case _MM_SHUFFLE(3, 2, 0, 2): return _mm_shuffle_ps_3202(a, b); break; case _MM_SHUFFLE(1, 1, 3, 3): return _mm_shuffle_ps_1133(a, b); break; case _MM_SHUFFLE(2, 0, 1, 0): return _mm_shuffle_ps_2010(a, b); break; case _MM_SHUFFLE(2, 0, 0, 1): return _mm_shuffle_ps_2001(a, b); break; case _MM_SHUFFLE(2, 0, 3, 2): return _mm_shuffle_ps_2032(a, b); break; default: _mm_shuffle_ps_default(a, b); } } #define _mm_shuffle_ps(a,b,i) _mm_shuffle_ps_function(a,b) // Takes the upper 64 bits of a and places it in the low end of the result // Takes the lower 64 bits of b and places it into the high end of the result. FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a, __m128i b) { return vcombine_s32(vget_high_s32(a), vget_low_s32(b)); } // takes the lower two 32-bit values from a and swaps them and places in low end of result // takes the higher two 32 bit values from b and swaps them and places in high end of result. FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a, __m128i b) { return vcombine_s32(vrev64_s32(vget_low_s32(a)), vrev64_s32(vget_high_s32(b))); } // shift a right by 32 bits, and put the lower 32 bits of a into the upper 32 bits of b // when a and b are the same, rotates the least significant 32 bits into the most signficant 32 bits, and shifts the rest down FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a, __m128i b) { return vextq_s32(a, b, 1); } // shift a left by 32 bits, and put the upper 32 bits of b into the lower 32 bits of a // when a and b are the same, rotates the most significant 32 bits into the least signficant 32 bits, and shifts the rest up FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a, __m128i b) { return vextq_s32(a, b, 3); } // gets the lower 64 bits of a, and places it in the upper 64 bits // gets the lower 64 bits of b and places it in the lower 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a, __m128i b) { return vcombine_s32(vget_low_s32(a), vget_low_s32(b)); } // gets the lower 64 bits of a, and places it in the upper 64 bits // gets the lower 64 bits of b, swaps the 0 and 1 elements, and places it in the lower 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a, __m128i b) { return vcombine_s32(vrev64_s32(vget_low_s32(a)), vget_low_s32(b)); } // gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the upper 64 bits // gets the lower 64 bits of b, swaps the 0 and 1 elements, and places it in the lower 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a, __m128i b) { return vcombine_s32(vrev64_s32(vget_low_s32(a)), vrev64_s32(vget_low_s32(b))); } FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a, __m128i b) { return vcombine_s32(vdup_n_s32(vgetq_lane_s32(a, 1)), vdup_n_s32(vgetq_lane_s32(b, 2))); } FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a, __m128i b) { return vcombine_s32(vdup_n_s32(vgetq_lane_s32(a, 2)), vrev64_s32(vget_low_s32(b))); } FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a, __m128i b) { return vcombine_s32(vget_high_s32(a), vdup_n_s32(vgetq_lane_s32(b, 3))); } template FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, __m128i b) { #if ENABLE_CPP_VERSION __m128i ret; ret[0] = a[i & 0x3]; ret[1] = a[(i >> 2) & 0x3]; ret[2] = b[(i >> 4) & 0x03]; ret[3] = b[(i >> 6) & 0x03]; return ret; #else __m128i ret = vmovq_n_s32(vgetq_lane_s32(a, i & 0x3)); ret = vsetq_lane_s32(vgetq_lane_s32(a, (i >> 2) & 0x3), ret, 1); ret = vsetq_lane_s32(vgetq_lane_s32(b, (i >> 4) & 0x3), ret, 2); ret = vsetq_lane_s32(vgetq_lane_s32(b, (i >> 6) & 0x3), ret, 3); return ret; #endif } template FORCE_INLINE __m128i _mm_shuffle_epi32_function(__m128i a, __m128i b) { switch (i) { case _MM_SHUFFLE(1, 0, 3, 2): return _mm_shuffle_epi_1032(a, b); break; case _MM_SHUFFLE(2, 3, 0, 1): return _mm_shuffle_epi_2301(a, b); break; case _MM_SHUFFLE(0, 3, 2, 1): return _mm_shuffle_epi_0321(a, b); break; case _MM_SHUFFLE(2, 1, 0, 3): return _mm_shuffle_epi_2103(a, b); break; case _MM_SHUFFLE(1, 0, 1, 0): return _mm_shuffle_epi_1010(a, b); break; case _MM_SHUFFLE(1, 0, 0, 1): return _mm_shuffle_epi_1001(a, b); break; case _MM_SHUFFLE(0, 1, 0, 1): return _mm_shuffle_epi_0101(a, b); break; case _MM_SHUFFLE(2, 2, 1, 1): return _mm_shuffle_epi_2211(a, b); break; case _MM_SHUFFLE(0, 1, 2, 2): return _mm_shuffle_epi_0122(a, b); break; case _MM_SHUFFLE(3, 3, 3, 2): return _mm_shuffle_epi_3332(a, b); break; default: return _mm_shuffle_epi32_default(a, b); } } template FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a) { return vdupq_n_s32(vgetq_lane_s32(a, i)); } template FORCE_INLINE __m128i _mm_shuffle_epi32_single(__m128i a) { switch (i) { case _MM_SHUFFLE(0, 0, 0, 0): return _mm_shuffle_epi32_splat<0>(a); break; case _MM_SHUFFLE(1, 1, 1, 1): return _mm_shuffle_epi32_splat<1>(a); break; case _MM_SHUFFLE(2, 2, 2, 2): return _mm_shuffle_epi32_splat<2>(a); break; case _MM_SHUFFLE(3, 3, 3, 3): return _mm_shuffle_epi32_splat<3>(a); break; default: return _mm_shuffle_epi32_function(a, a); } } // Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx #define _mm_shuffle_epi32(a,i) _mm_shuffle_epi32_single(a) template FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a) { int16x8_t ret = (int16x8_t)a; int16x4_t highBits = vget_high_s16(ret); ret = vsetq_lane_s16(vget_lane_s16(highBits, i & 0x3), ret, 4); ret = vsetq_lane_s16(vget_lane_s16(highBits, (i >> 2) & 0x3), ret, 5); ret = vsetq_lane_s16(vget_lane_s16(highBits, (i >> 4) & 0x3), ret, 6); ret = vsetq_lane_s16(vget_lane_s16(highBits, (i >> 6) & 0x3), ret, 7); return (__m128i)ret; } // Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx #define _mm_shufflehi_epi16(a,i) _mm_shufflehi_epi16_function(a) // Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros. : https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx #define _mm_slli_epi32(a, imm) (__m128i)vshlq_n_s32(a,imm) //Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros. https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx #define _mm_srli_epi32( a, imm ) (__m128i)vshrq_n_u32((uint32x4_t)a, imm) // Shifts the 4 signed 32 - bit integers in a right by count bits while shifting in the sign bit. https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx #define _mm_srai_epi32( a, imm ) vshrq_n_s32(a, imm) // Shifts the 128 - bit value in a right by imm bytes while shifting in zeros.imm must be an immediate. https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx //#define _mm_srli_si128( a, imm ) (__m128i)vmaxq_s8((int8x16_t)a, vextq_s8((int8x16_t)a, vdupq_n_s8(0), imm)) #define _mm_srli_si128( a, imm ) (__m128i)vextq_s8((int8x16_t)a, vdupq_n_s8(0), (imm)) // Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate. https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx #define _mm_slli_si128( a, imm ) (__m128i)vextq_s8(vdupq_n_s8(0), (int8x16_t)a, 16 - (imm)) // NEON does not provide a version of this function, here is an article about some ways to repro the results. // http://stackoverflow.com/questions/11870910/sse-mm-movemask-epi8-equivalent-method-for-arm-neon // Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and zero extends the upper bits. https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx FORCE_INLINE int _mm_movemask_epi8(__m128i _a) { uint8x16_t input = (uint8x16_t)_a; const int8_t __attribute__((aligned(16))) xr[8] = { -7, -6, -5, -4, -3, -2, -1, 0 }; uint8x8_t mask_and = vdup_n_u8(0x80); int8x8_t mask_shift = vld1_s8(xr); uint8x8_t lo = vget_low_u8(input); uint8x8_t hi = vget_high_u8(input); lo = vand_u8(lo, mask_and); lo = vshl_u8(lo, mask_shift); hi = vand_u8(hi, mask_and); hi = vshl_u8(hi, mask_shift); lo = vpadd_u8(lo, lo); lo = vpadd_u8(lo, lo); lo = vpadd_u8(lo, lo); hi = vpadd_u8(hi, hi); hi = vpadd_u8(hi, hi); hi = vpadd_u8(hi, hi); return ((hi[0] << 8) | (lo[0] & 0xFF)); } // ****************************************** // Math operations // ****************************************** // Subtracts the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) { return vsubq_f32(a, b); } // Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a. https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) { return vsubq_s32(a, b); } // Adds the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) { return vaddq_f32(a, b); } // Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) { return vaddq_s32(a, b); } // Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) { return (__m128i)vaddq_s16((int16x8_t)a, (int16x8_t)b); } // Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) { return (__m128i)vmulq_s16((int16x8_t)a, (int16x8_t)b); } // Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or unsigned 32-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx FORCE_INLINE __m128i _mm_mullo_epi32 (__m128i a, __m128i b) { return (__m128i)vmulq_s32((int32x4_t)a,(int32x4_t)b); } // Multiplies the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) { return vmulq_f32(a, b); } // This version does additional iterations to improve accuracy. Between 1 and 4 recommended. // Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx FORCE_INLINE __m128 recipq_newton(__m128 in, int n) { __m128 recip = vrecpeq_f32(in); for (int i = 0; i