/* * jcphuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2011, 2015, 2018, D. R. Commander. * Copyright (C) 2016, 2018, Matthieu Darbois. * Copyright (C) 2014, Mozilla Corporation. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains Huffman entropy encoding routines for progressive JPEG. * * We do not support output suspension in this module, since the library * currently does not allow multiple-scan files to be written with output * suspension. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include "jconfigint.h" #include #ifdef HAVE_INTRIN_H #include #ifdef _MSC_VER #ifdef HAVE_BITSCANFORWARD64 #pragma intrinsic(_BitScanForward64) #endif #ifdef HAVE_BITSCANFORWARD #pragma intrinsic(_BitScanForward) #endif #endif #endif #ifdef C_PROGRESSIVE_SUPPORTED /* * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be * used for bit counting rather than the lookup table. This will reduce the * memory footprint by 64k, which is important for some mobile applications * that create many isolated instances of libjpeg-turbo (web browsers, for * instance.) This may improve performance on some mobile platforms as well. * This feature is enabled by default only on ARM processors, because some x86 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be * shown to have a significant performance impact even on the x86 chips that * have a fast implementation of it. When building for ARMv6, you can * explicitly disable the use of clz/bsr by adding -mthumb to the compiler * flags (this defines __thumb__). */ /* NOTE: Both GCC and Clang define __GNUC__ */ #if defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__)) #if !defined(__thumb__) || defined(__thumb2__) #define USE_CLZ_INTRINSIC #endif #endif #ifdef USE_CLZ_INTRINSIC #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x)) #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0) #else #include "jpeg_nbits_table.h" #define JPEG_NBITS(x) (jpeg_nbits_table[x]) #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x) #endif /* Expanded entropy encoder object for progressive Huffman encoding. */ typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ /* Pointer to routine to prepare data for encode_mcu_AC_first() */ void (*AC_first_prepare) (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, JCOEF *values, size_t *zerobits); /* Pointer to routine to prepare data for encode_mcu_AC_refine() */ int (*AC_refine_prepare) (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, JCOEF *absvalues, size_t *bits); /* Mode flag: TRUE for optimization, FALSE for actual data output */ boolean gather_statistics; /* Bit-level coding status. * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. */ JOCTET *next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ size_t put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ /* Coding status for DC components */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ /* Coding status for AC components */ int ac_tbl_no; /* the table number of the single component */ unsigned int EOBRUN; /* run length of EOBs */ unsigned int BE; /* # of buffered correction bits before MCU */ char *bit_buffer; /* buffer for correction bits (1 per char) */ /* packing correction bits tightly would save some space but cost time... */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan). * Since any one scan codes only DC or only AC, we only need one set * of tables, not one for DC and one for AC. */ c_derived_tbl *derived_tbls[NUM_HUFF_TBLS]; /* Statistics tables for optimization; again, one set is enough */ long *count_ptrs[NUM_HUFF_TBLS]; } phuff_entropy_encoder; typedef phuff_entropy_encoder *phuff_entropy_ptr; /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit * buffer can hold. Larger sizes may slightly improve compression, but * 1000 is already well into the realm of overkill. * The minimum safe size is 64 bits. */ #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG. * We assume that int right shift is unsigned if JLONG right shift is, * which should be safe. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS int ishift_temp; #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif #define PAD(v, p) ((v + (p) - 1) & (~((p) - 1))) /* Forward declarations */ METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) encode_mcu_AC_first_prepare (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, JCOEF *values, size_t *zerobits); METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(int) encode_mcu_AC_refine_prepare (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, JCOEF *absvalues, size_t *bits); METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo); METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo); /* Count bit loop zeroes */ INLINE METHODDEF(int) count_zeroes(size_t *x) { int result; #if defined(HAVE_BUILTIN_CTZL) result = __builtin_ctzl(*x); *x >>= result; #elif defined(HAVE_BITSCANFORWARD64) _BitScanForward64(&result, *x); *x >>= result; #elif defined(HAVE_BITSCANFORWARD) _BitScanForward(&result, *x); *x >>= result; #else result = 0; while ((*x & 1) == 0) { ++result; *x >>= 1; } #endif return result; } /* * Initialize for a Huffman-compressed scan using progressive JPEG. */ METHODDEF(void) start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; boolean is_DC_band; int ci, tbl; jpeg_component_info *compptr; entropy->cinfo = cinfo; entropy->gather_statistics = gather_statistics; is_DC_band = (cinfo->Ss == 0); /* We assume jcmaster.c already validated the scan parameters. */ /* Select execution routines */ if (cinfo->Ah == 0) { if (is_DC_band) entropy->pub.encode_mcu = encode_mcu_DC_first; else entropy->pub.encode_mcu = encode_mcu_AC_first; if (jsimd_can_encode_mcu_AC_first_prepare()) entropy->AC_first_prepare = jsimd_encode_mcu_AC_first_prepare; else entropy->AC_first_prepare = encode_mcu_AC_first_prepare; } else { if (is_DC_band) entropy->pub.encode_mcu = encode_mcu_DC_refine; else { entropy->pub.encode_mcu = encode_mcu_AC_refine; if (jsimd_can_encode_mcu_AC_refine_prepare()) entropy->AC_refine_prepare = jsimd_encode_mcu_AC_refine_prepare; else entropy->AC_refine_prepare = encode_mcu_AC_refine_prepare; /* AC refinement needs a correction bit buffer */ if (entropy->bit_buffer == NULL) entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * sizeof(char)); } } if (gather_statistics) entropy->pub.finish_pass = finish_pass_gather_phuff; else entropy->pub.finish_pass = finish_pass_phuff; /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 * for AC coefficients. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; /* Get table index */ if (is_DC_band) { if (cinfo->Ah != 0) /* DC refinement needs no table */ continue; tbl = compptr->dc_tbl_no; } else { entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; } if (gather_statistics) { /* Check for invalid table index */ /* (make_c_derived_tbl does this in the other path) */ if (tbl < 0 || tbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->count_ptrs[tbl] == NULL) entropy->count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * sizeof(long)); MEMZERO(entropy->count_ptrs[tbl], 257 * sizeof(long)); if (cinfo->master->trellis_passes) { /* When generating tables for trellis passes, make sure that all */ /* codewords have an assigned length */ int i, j; for (i = 0; i < 16; i++) for (j = 0; j < 12; j++) entropy->count_ptrs[tbl][16 * i + j] = 1; } } else { /* Compute derived values for Huffman table */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, & entropy->derived_tbls[tbl]); } } /* Initialize AC stuff */ entropy->EOBRUN = 0; entropy->BE = 0; /* Initialize bit buffer to empty */ entropy->put_buffer = 0; entropy->put_bits = 0; /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* Outputting bytes to the file. * NB: these must be called only when actually outputting, * that is, entropy->gather_statistics == FALSE. */ /* Emit a byte */ #define emit_byte(entropy, val) { \ *(entropy)->next_output_byte++ = (JOCTET)(val); \ if (--(entropy)->free_in_buffer == 0) \ dump_buffer(entropy); \ } LOCAL(void) dump_buffer (phuff_entropy_ptr entropy) /* Empty the output buffer; we do not support suspension in this module. */ { struct jpeg_destination_mgr *dest = entropy->cinfo->dest; if (! (*dest->empty_output_buffer) (entropy->cinfo)) ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); /* After a successful buffer dump, must reset buffer pointers */ entropy->next_output_byte = dest->next_output_byte; entropy->free_in_buffer = dest->free_in_buffer; } /* Outputting bits to the file */ /* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part. At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */ LOCAL(void) emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) /* Emit some bits, unless we are in gather mode */ { /* This routine is heavily used, so it's worth coding tightly. */ register size_t put_buffer = (size_t) code; register int put_bits = entropy->put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); if (entropy->gather_statistics) return; /* do nothing if we're only getting stats */ put_buffer &= (((size_t) 1)<put_buffer; /* and merge with old buffer contents */ while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); emit_byte(entropy, c); if (c == 0xFF) { /* need to stuff a zero byte? */ emit_byte(entropy, 0); } put_buffer <<= 8; put_bits -= 8; } entropy->put_buffer = put_buffer; /* update variables */ entropy->put_bits = put_bits; } LOCAL(void) flush_bits (phuff_entropy_ptr entropy) { emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ entropy->put_buffer = 0; /* and reset bit-buffer to empty */ entropy->put_bits = 0; } /* * Emit (or just count) a Huffman symbol. */ LOCAL(void) emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) { if (entropy->gather_statistics) entropy->count_ptrs[tbl_no][symbol]++; else { c_derived_tbl *tbl = entropy->derived_tbls[tbl_no]; emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); } } /* * Emit bits from a correction bit buffer. */ LOCAL(void) emit_buffered_bits (phuff_entropy_ptr entropy, char *bufstart, unsigned int nbits) { if (entropy->gather_statistics) return; /* no real work */ while (nbits > 0) { emit_bits(entropy, (unsigned int) (*bufstart), 1); bufstart++; nbits--; } } /* * Emit any pending EOBRUN symbol. */ LOCAL(void) emit_eobrun (phuff_entropy_ptr entropy) { register int temp, nbits; if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ temp = entropy->EOBRUN; nbits = JPEG_NBITS_NONZERO(temp) - 1; /* safety check: shouldn't happen given limited correction-bit buffer */ if (nbits > 14) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); if (nbits) emit_bits(entropy, entropy->EOBRUN, nbits); entropy->EOBRUN = 0; /* Emit any buffered correction bits */ emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); entropy->BE = 0; } } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(void) emit_restart (phuff_entropy_ptr entropy, int restart_num) { int ci; emit_eobrun(entropy); if (! entropy->gather_statistics) { flush_bits(entropy); emit_byte(entropy, 0xFF); emit_byte(entropy, JPEG_RST0 + restart_num); } if (entropy->cinfo->Ss == 0) { /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) entropy->last_dc_val[ci] = 0; } else { /* Re-initialize all AC-related fields to 0 */ entropy->EOBRUN = 0; entropy->BE = 0; } } /* * MCU encoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp, temp2, temp3; register int nbits; int blkn, ci; int Al = cinfo->Al; JBLOCKROW block; jpeg_component_info *compptr; ISHIFT_TEMPS entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); /* DC differences are figured on the point-transformed values. */ temp = temp2 - entropy->last_dc_val[ci]; entropy->last_dc_val[ci] = temp2; /* Encode the DC coefficient difference per section G.1.2.1 */ /* This is a well-known technique for obtaining the absolute value without * a branch. It is derived from an assembly language technique presented * in "How to Optimize for the Pentium Processors", Copyright (c) 1996, * 1997 by Agner Fog. */ temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); temp ^= temp3; temp -= temp3; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ temp2 = temp ^ temp3; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = JPEG_NBITS(temp); /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS+1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit the Huffman-coded symbol for the number of bits */ emit_symbol(entropy, compptr->dc_tbl_no, nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) /* emit_bits rejects calls with size 0 */ emit_bits(entropy, (unsigned int) temp2, nbits); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Data preparation for encode_mcu_AC_first(). */ #define COMPUTE_ABSVALUES_AC_FIRST(Sl) { \ for (k = 0; k < Sl; k++) { \ temp = block[jpeg_natural_order_start[k]]; \ if (temp == 0) \ continue; \ /* We must apply the point transform by Al. For AC coefficients this \ * is an integer division with rounding towards 0. To do this portably \ * in C, we shift after obtaining the absolute value; so the code is \ * interwoven with finding the abs value (temp) and output bits (temp2). \ */ \ temp2 = temp >> (CHAR_BIT * sizeof(int) - 1); \ temp ^= temp2; \ temp -= temp2; /* temp is abs value of input */ \ temp >>= Al; /* apply the point transform */ \ /* Watch out for case that nonzero coef is zero after point transform */ \ if (temp == 0) \ continue; \ /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ \ temp2 ^= temp; \ values[k] = temp; \ values[k + DCTSIZE2] = temp2; \ zerobits |= ((size_t)1U) << k; \ } \ } METHODDEF(void) encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, JCOEF *values, size_t *bits) { register int k, temp, temp2; size_t zerobits = 0U; int Sl0 = Sl; #if SIZEOF_SIZE_T == 4 if (Sl0 > 32) Sl0 = 32; #endif COMPUTE_ABSVALUES_AC_FIRST(Sl0); bits[0] = zerobits; #if SIZEOF_SIZE_T == 4 zerobits = 0U; if (Sl > 32) { Sl -= 32; jpeg_natural_order_start += 32; values += 32; COMPUTE_ABSVALUES_AC_FIRST(Sl); } bits[1] = zerobits; #endif } /* * MCU encoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ #define ENCODE_COEFS_AC_FIRST(label) { \ while (zerobits) { \ r = count_zeroes(&zerobits); \ cvalue += r; \ label \ temp = cvalue[0]; \ temp2 = cvalue[DCTSIZE2]; \ \ /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \ while (r > 15) { \ emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); \ r -= 16; \ } \ \ /* Find the number of bits needed for the magnitude of the coefficient */ \ nbits = JPEG_NBITS_NONZERO(temp); /* there must be at least one 1 bit */ \ /* Check for out-of-range coefficient values */ \ if (nbits > MAX_COEF_BITS) \ ERREXIT(cinfo, JERR_BAD_DCT_COEF); \ \ /* Count/emit Huffman symbol for run length / number of bits */ \ emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); \ \ /* Emit that number of bits of the value, if positive, */ \ /* or the complement of its magnitude, if negative. */ \ emit_bits(entropy, (unsigned int)temp2, nbits); \ \ cvalue++; \ zerobits >>= 1; \ } \ } METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits, r; int Sl = cinfo->Se - cinfo->Ss + 1; int Al = cinfo->Al; JCOEF values_unaligned[2 * DCTSIZE2 + 15]; JCOEF *values; const JCOEF *cvalue; size_t zerobits; size_t bits[8 / SIZEOF_SIZE_T]; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); #ifdef WITH_SIMD cvalue = values = (JCOEF *)PAD((size_t)values_unaligned, 16); #else /* Not using SIMD, so alignment is not needed */ cvalue = values = values_unaligned; #endif /* Prepare data */ entropy->AC_first_prepare(MCU_data[0][0], jpeg_natural_order + cinfo->Ss, Sl, Al, values, bits); zerobits = bits[0]; #if SIZEOF_SIZE_T == 4 zerobits |= bits[1]; #endif /* Emit any pending EOBRUN */ if (zerobits && (entropy->EOBRUN > 0)) emit_eobrun(entropy); #if SIZEOF_SIZE_T == 4 zerobits = bits[0]; #endif /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ ENCODE_COEFS_AC_FIRST((void)0;); #if SIZEOF_SIZE_T == 4 zerobits = bits[1]; if (zerobits) { int diff = ((values + DCTSIZE2 / 2) - cvalue); r = count_zeroes(&zerobits); r += diff; cvalue += r; goto first_iter_ac_first; } ENCODE_COEFS_AC_FIRST(first_iter_ac_first:); #endif if (cvalue < (values + Sl)) { /* If there are trailing zeroes, */ entropy->EOBRUN++; /* count an EOB */ if (entropy->EOBRUN == 0x7FFF) emit_eobrun(entropy); /* force it out to avoid overflow */ } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * MCU encoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */ METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp; int blkn; int Al = cinfo->Al; JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; /* We simply emit the Al'th bit of the DC coefficient value. */ temp = (*block)[0]; emit_bits(entropy, (unsigned int) (temp >> Al), 1); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Data preparation for encode_mcu_AC_refine(). */ #define COMPUTE_ABSVALUES_AC_REFINE(Sl, koffset) { \ /* It is convenient to make a pre-pass to determine the transformed \ * coefficients' absolute values and the EOB position. \ */ \ for (k = 0; k < Sl; k++) { \ temp = block[jpeg_natural_order_start[k]]; \ /* We must apply the point transform by Al. For AC coefficients this \ * is an integer division with rounding towards 0. To do this portably \ * in C, we shift after obtaining the absolute value. \ */ \ temp2 = temp >> (CHAR_BIT * sizeof(int) - 1); \ temp ^= temp2; \ temp -= temp2; /* temp is abs value of input */ \ temp >>= Al; /* apply the point transform */ \ if (temp != 0) { \ zerobits |= ((size_t)1U) << k; \ signbits |= ((size_t)(temp2 + 1)) << k; \ } \ absvalues[k] = (JCOEF)temp; /* save abs value for main pass */ \ if (temp == 1) \ EOB = k + koffset; /* EOB = index of last newly-nonzero coef */ \ } \ } METHODDEF(int) encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, JCOEF *absvalues, size_t *bits) { register int k, temp, temp2; int EOB = 0; size_t zerobits = 0U, signbits = 0U; int Sl0 = Sl; #if SIZEOF_SIZE_T == 4 if (Sl0 > 32) Sl0 = 32; #endif COMPUTE_ABSVALUES_AC_REFINE(Sl0, 0); bits[0] = zerobits; #if SIZEOF_SIZE_T == 8 bits[1] = signbits; #else bits[2] = signbits; zerobits = 0U; signbits = 0U; if (Sl > 32) { Sl -= 32; jpeg_natural_order_start += 32; absvalues += 32; COMPUTE_ABSVALUES_AC_REFINE(Sl, 32); } bits[1] = zerobits; bits[3] = signbits; #endif return EOB; } /* * MCU encoding for AC successive approximation refinement scan. */ #define ENCODE_COEFS_AC_REFINE(label) { \ while (zerobits) { \ int idx = count_zeroes(&zerobits); \ r += idx; \ cabsvalue += idx; \ signbits >>= idx; \ label \ /* Emit any required ZRLs, but not if they can be folded into EOB */ \ while (r > 15 && (cabsvalue <= EOBPTR)) { \ /* emit any pending EOBRUN and the BE correction bits */ \ emit_eobrun(entropy); \ /* Emit ZRL */ \ emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); \ r -= 16; \ /* Emit buffered correction bits that must be associated with ZRL */ \ emit_buffered_bits(entropy, BR_buffer, BR); \ BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ \ BR = 0; \ } \ \ temp = *cabsvalue++; \ \ /* If the coef was previously nonzero, it only needs a correction bit. \ * NOTE: a straight translation of the spec's figure G.7 would suggest \ * that we also need to test r > 15. But if r > 15, we can only get here \ * if k > EOB, which implies that this coefficient is not 1. \ */ \ if (temp > 1) { \ /* The correction bit is the next bit of the absolute value. */ \ BR_buffer[BR++] = (char)(temp & 1); \ signbits >>= 1; \ zerobits >>= 1; \ continue; \ } \ \ /* Emit any pending EOBRUN and the BE correction bits */ \ emit_eobrun(entropy); \ \ /* Count/emit Huffman symbol for run length / number of bits */ \ emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); \ \ /* Emit output bit for newly-nonzero coef */ \ temp = signbits & 1; /* ((*block)[jpeg_natural_order_start[k]] < 0) ? 0 : 1 */ \ emit_bits(entropy, (unsigned int)temp, 1); \ \ /* Emit buffered correction bits that must be associated with this code */ \ emit_buffered_bits(entropy, BR_buffer, BR); \ BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ \ BR = 0; \ r = 0; /* reset zero run length */ \ signbits >>= 1; \ zerobits >>= 1; \ } \ } METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp, r; char *BR_buffer; unsigned int BR; int Sl = cinfo->Se - cinfo->Ss + 1; int Al = cinfo->Al; JCOEF absvalues_unaligned[DCTSIZE2 + 15]; JCOEF *absvalues; const JCOEF *cabsvalue, *EOBPTR; size_t zerobits, signbits; size_t bits[16 / SIZEOF_SIZE_T]; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); #ifdef WITH_SIMD cabsvalue = absvalues = (JCOEF *)PAD((size_t)absvalues_unaligned, 16); #else /* Not using SIMD, so alignment is not needed */ cabsvalue = absvalues = absvalues_unaligned; #endif /* Prepare data */ EOBPTR = absvalues + entropy->AC_refine_prepare(MCU_data[0][0], jpeg_natural_order + cinfo->Ss, Sl, Al, absvalues, bits); /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ r = 0; /* r = run length of zeros */ BR = 0; /* BR = count of buffered bits added now */ BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ zerobits = bits[0]; #if SIZEOF_SIZE_T == 8 signbits = bits[1]; #else signbits = bits[2]; #endif ENCODE_COEFS_AC_REFINE((void)0;); #if SIZEOF_SIZE_T == 4 zerobits = bits[1]; signbits = bits[3]; if (zerobits) { int diff = ((absvalues + DCTSIZE2 / 2) - cabsvalue); int idx = count_zeroes(&zerobits); signbits >>= idx; idx += diff; r += idx; cabsvalue += idx; goto first_iter_ac_refine; } ENCODE_COEFS_AC_REFINE(first_iter_ac_refine:); #endif r |= (int)((absvalues + Sl) - cabsvalue); if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ entropy->EOBRUN++; /* count an EOB */ entropy->BE += BR; /* concat my correction bits to older ones */ /* We force out the EOB if we risk either: * 1. overflow of the EOB counter; * 2. overflow of the correction bit buffer during the next MCU. */ if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS - DCTSIZE2 + 1)) emit_eobrun(entropy); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Finish up at the end of a Huffman-compressed progressive scan. */ METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Flush out any buffered data */ emit_eobrun(entropy); flush_bits(entropy); cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; boolean is_DC_band; int ci, tbl; jpeg_component_info *compptr; JHUFF_TBL **htblptr; boolean did[NUM_HUFF_TBLS]; /* Flush out buffered data (all we care about is counting the EOB symbol) */ emit_eobrun(entropy); is_DC_band = (cinfo->Ss == 0); /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ MEMZERO(did, sizeof(did)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (is_DC_band) { if (cinfo->Ah != 0) /* DC refinement needs no table */ continue; tbl = compptr->dc_tbl_no; } else { tbl = compptr->ac_tbl_no; } if (! did[tbl]) { if (is_DC_band) htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; else htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); did[tbl] = TRUE; } } } /* * Module initialization routine for progressive Huffman entropy encoding. */ GLOBAL(void) jinit_phuff_encoder (j_compress_ptr cinfo) { phuff_entropy_ptr entropy; int i; entropy = (phuff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(phuff_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; entropy->pub.start_pass = start_pass_phuff; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; entropy->count_ptrs[i] = NULL; } entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ } #endif /* C_PROGRESSIVE_SUPPORTED */