/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_ #define RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_ #include #include #include #include "absl/types/optional.h" #include "rtc_base/checks.h" #include "rtc_base/numerics/math_utils.h" namespace webrtc { // tl;dr: Robust and efficient online computation of statistics, // using Welford's method for variance. [1] // // This should be your go-to class if you ever need to compute // min, max, mean, variance and standard deviation. // If you need to get percentiles, please use webrtc::SamplesStatsCounter. // // Please note RemoveSample() won't affect min and max. // If you want a full-fledged moving window over N last samples, // please use webrtc::RollingAccumulator. // // The measures return absl::nullopt if no samples were fed (Size() == 0), // otherwise the returned optional is guaranteed to contain a value. // // [1] // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm // The type T is a scalar which must be convertible to double. // Rationale: we often need greater precision for measures // than for the samples themselves. template class RunningStatistics { public: // Update stats //////////////////////////////////////////// // Add a value participating in the statistics in O(1) time. void AddSample(T sample) { max_ = std::max(max_, sample); min_ = std::min(min_, sample); ++size_; // Welford's incremental update. const double delta = sample - mean_; mean_ += delta / size_; const double delta2 = sample - mean_; cumul_ += delta * delta2; } // Remove a previously added value in O(1) time. // Nb: This doesn't affect min or max. // Calling RemoveSample when Size()==0 is incorrect. void RemoveSample(T sample) { RTC_DCHECK_GT(Size(), 0); // In production, just saturate at 0. if (Size() == 0) { return; } // Since samples order doesn't matter, this is the // exact reciprocal of Welford's incremental update. --size_; const double delta = sample - mean_; mean_ -= delta / size_; const double delta2 = sample - mean_; cumul_ -= delta * delta2; } // Merge other stats, as if samples were added one by one, but in O(1). void MergeStatistics(const RunningStatistics& other) { if (other.size_ == 0) { return; } max_ = std::max(max_, other.max_); min_ = std::min(min_, other.min_); const int64_t new_size = size_ + other.size_; const double new_mean = (mean_ * size_ + other.mean_ * other.size_) / new_size; // Each cumulant must be corrected. // * from: sum((x_i - mean_)²) // * to: sum((x_i - new_mean)²) auto delta = [new_mean](const RunningStatistics& stats) { return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) + stats.mean_ * stats.mean_); }; cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other); mean_ = new_mean; size_ = new_size; } // Get Measures //////////////////////////////////////////// // Returns number of samples involved via AddSample() or MergeStatistics(), // minus number of times RemoveSample() was called. int64_t Size() const { return size_; } // Returns minimum among all seen samples, in O(1) time. // This isn't affected by RemoveSample(). absl::optional GetMin() const { if (size_ == 0) { return absl::nullopt; } return min_; } // Returns maximum among all seen samples, in O(1) time. // This isn't affected by RemoveSample(). absl::optional GetMax() const { if (size_ == 0) { return absl::nullopt; } return max_; } // Returns mean in O(1) time. absl::optional GetMean() const { if (size_ == 0) { return absl::nullopt; } return mean_; } // Returns unbiased sample variance in O(1) time. absl::optional GetVariance() const { if (size_ == 0) { return absl::nullopt; } return cumul_ / size_; } // Returns unbiased standard deviation in O(1) time. absl::optional GetStandardDeviation() const { if (size_ == 0) { return absl::nullopt; } return std::sqrt(*GetVariance()); } private: int64_t size_ = 0; // Samples seen. T min_ = infinity_or_max(); T max_ = minus_infinity_or_min(); double mean_ = 0; double cumul_ = 0; // Variance * size_, sometimes noted m2. }; } // namespace webrtc #endif // RTC_BASE_NUMERICS_RUNNING_STATISTICS_H_