// Copyright 2019 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_HASH_MD5_CONSTEXPR_INTERNAL_H_ #define BASE_HASH_MD5_CONSTEXPR_INTERNAL_H_ #include #include #include #include "base/hash/md5.h" #include "base/logging.h" namespace base { namespace internal { // The implementation here is based on the pseudocode provided by Wikipedia: // https://en.wikipedia.org/wiki/MD5#Pseudocode struct MD5CE { ////////////////////////////////////////////////////////////////////////////// // DATA STRUCTURES // The data representation at each round is a 4-tuple of uint32_t. struct IntermediateData { uint32_t a; uint32_t b; uint32_t c; uint32_t d; }; // The input data for a single round consists of 16 uint32_t (64 bytes). using RoundData = std::array; ////////////////////////////////////////////////////////////////////////////// // CONSTANTS static constexpr std::array kConstants = { {0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391}}; static constexpr std::array kShifts = { {7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21}}; // The initial intermediate data. static constexpr IntermediateData kInitialIntermediateData{ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476}; ////////////////////////////////////////////////////////////////////////////// // PADDED MESSAGE GENERATION / EXTRACTION // Given the message length, calculates the padded message length. There has // to be room for the 1-byte end-of-message marker, plus 8 bytes for the // uint64_t encoded message length, all rounded up to a multiple of 64 bytes. static constexpr uint32_t GetPaddedMessageLength(const uint32_t n) { return (((n + 1 + 8) + 63) / 64) * 64; } // Extracts the |i|th byte of a uint64_t, where |i == 0| extracts the least // significant byte. It is expected that 0 <= i < 8. static constexpr uint8_t ExtractByte(const uint64_t value, const uint32_t i) { DCHECK(i < 8); return static_cast((value >> (i * 8)) & 0xff); } // Extracts the |i|th byte of a message of length |n|. static constexpr uint8_t GetPaddedMessageByte(const char* data, const uint32_t n, const uint32_t m, const uint32_t i) { DCHECK(i < m); DCHECK(n < m); DCHECK(m % 64 == 0); if (i < n) { // Emit the message itself... return data[i]; } else if (i == n) { // ...followed by the end of message marker. return 0x80; } else if (i >= m - 8) { // The last 8 bytes encode the original message length times 8. return ExtractByte(n * 8, i - (m - 8)); } else { // And everything else is just empyt padding. return 0; } } // Extracts the uint32_t starting at position |i| from the padded message // generate by the provided input |data| of length |n|. The bytes are treated // in little endian order. static constexpr uint32_t GetPaddedMessageWord(const char* data, const uint32_t n, const uint32_t m, const uint32_t i) { DCHECK(i % 4 == 0); DCHECK(i < m); DCHECK(n < m); DCHECK(m % 64 == 0); return static_cast(GetPaddedMessageByte(data, n, m, i)) | static_cast((GetPaddedMessageByte(data, n, m, i + 1)) << 8) | static_cast((GetPaddedMessageByte(data, n, m, i + 2)) << 16) | static_cast((GetPaddedMessageByte(data, n, m, i + 3)) << 24); } // Given an input buffer of length |n| bytes, extracts one round worth of data // starting at offset |i|. static constexpr RoundData GetRoundData(const char* data, const uint32_t n, const uint32_t m, const uint32_t i) { DCHECK(i % 64 == 0); DCHECK(i < m); DCHECK(n < m); DCHECK(m % 64 == 0); return RoundData{{GetPaddedMessageWord(data, n, m, i), GetPaddedMessageWord(data, n, m, i + 4), GetPaddedMessageWord(data, n, m, i + 8), GetPaddedMessageWord(data, n, m, i + 12), GetPaddedMessageWord(data, n, m, i + 16), GetPaddedMessageWord(data, n, m, i + 20), GetPaddedMessageWord(data, n, m, i + 24), GetPaddedMessageWord(data, n, m, i + 28), GetPaddedMessageWord(data, n, m, i + 32), GetPaddedMessageWord(data, n, m, i + 36), GetPaddedMessageWord(data, n, m, i + 40), GetPaddedMessageWord(data, n, m, i + 44), GetPaddedMessageWord(data, n, m, i + 48), GetPaddedMessageWord(data, n, m, i + 52), GetPaddedMessageWord(data, n, m, i + 56), GetPaddedMessageWord(data, n, m, i + 60)}}; } ////////////////////////////////////////////////////////////////////////////// // HASH IMPLEMENTATION // Mixes elements |b|, |c| and |d| at round |i| of the calculation. static constexpr uint32_t CalcF(const uint32_t i, const uint32_t b, const uint32_t c, const uint32_t d) { DCHECK(i < 64); if (i < 16) { return d ^ (b & (c ^ d)); } else if (i < 32) { return c ^ (d & (b ^ c)); } else if (i < 48) { return b ^ c ^ d; } else { return c ^ (b | (~d)); } } static constexpr uint32_t CalcF(const uint32_t i, const IntermediateData& intermediate) { return CalcF(i, intermediate.b, intermediate.c, intermediate.d); } // Calculates the indexing function at round |i|. static constexpr uint32_t CalcG(const uint32_t i) { DCHECK(i < 64); if (i < 16) { return i; } else if (i < 32) { return (5 * i + 1) % 16; } else if (i < 48) { return (3 * i + 5) % 16; } else { return (7 * i) % 16; } } // Calculates the rotation to be applied at round |i|. static constexpr uint32_t GetShift(const uint32_t i) { DCHECK(i < 64); return kShifts[(i / 16) * 4 + (i % 4)]; } // Rotates to the left the given |value| by the given |bits|. static constexpr uint32_t LeftRotate(const uint32_t value, const uint32_t bits) { DCHECK(bits < 32); return (value << bits) | (value >> (32 - bits)); } // Applies the ith step of mixing. static constexpr IntermediateData ApplyStep( const uint32_t i, const RoundData& data, const IntermediateData& intermediate) { DCHECK(i < 64); const uint32_t g = CalcG(i); DCHECK(g < 16); const uint32_t f = CalcF(i, intermediate) + intermediate.a + kConstants[i] + data[g]; const uint32_t s = GetShift(i); return IntermediateData{/* a */ intermediate.d, /* b */ intermediate.b + LeftRotate(f, s), /* c */ intermediate.b, /* d */ intermediate.c}; } // Adds two IntermediateData together. static constexpr IntermediateData Add(const IntermediateData& intermediate1, const IntermediateData& intermediate2) { return IntermediateData{ intermediate1.a + intermediate2.a, intermediate1.b + intermediate2.b, intermediate1.c + intermediate2.c, intermediate1.d + intermediate2.d}; } // Processes an entire message. static constexpr IntermediateData ProcessMessage(const char* message, const uint32_t n) { const uint32_t m = GetPaddedMessageLength(n); IntermediateData intermediate0 = kInitialIntermediateData; for (uint32_t offset = 0; offset < m; offset += 64) { RoundData data = GetRoundData(message, n, m, offset); IntermediateData intermediate1 = intermediate0; for (uint32_t i = 0; i < 64; ++i) intermediate1 = ApplyStep(i, data, intermediate1); intermediate0 = Add(intermediate0, intermediate1); } return intermediate0; } ////////////////////////////////////////////////////////////////////////////// // HELPER FUNCTIONS // Converts an IntermediateData to a final digest. static constexpr MD5Digest IntermediateDataToMD5Digest( const IntermediateData& intermediate) { return MD5Digest{{static_cast((intermediate.a >> 0) & 0xff), static_cast((intermediate.a >> 8) & 0xff), static_cast((intermediate.a >> 16) & 0xff), static_cast((intermediate.a >> 24) & 0xff), static_cast((intermediate.b >> 0) & 0xff), static_cast((intermediate.b >> 8) & 0xff), static_cast((intermediate.b >> 16) & 0xff), static_cast((intermediate.b >> 24) & 0xff), static_cast((intermediate.c >> 0) & 0xff), static_cast((intermediate.c >> 8) & 0xff), static_cast((intermediate.c >> 16) & 0xff), static_cast((intermediate.c >> 24) & 0xff), static_cast((intermediate.d >> 0) & 0xff), static_cast((intermediate.d >> 8) & 0xff), static_cast((intermediate.d >> 16) & 0xff), static_cast((intermediate.d >> 24) & 0xff)}}; } static constexpr uint32_t StringLength(const char* string) { const char* end = string; while (*end != 0) ++end; // Double check that the precision losing conversion is safe. DCHECK(end >= string); DCHECK(static_cast(static_cast(end - string)) == (end - string)); return static_cast(end - string); } static constexpr uint32_t SwapEndian(uint32_t a) { return ((a & 0xff) << 24) | (((a >> 8) & 0xff) << 16) | (((a >> 16) & 0xff) << 8) | ((a >> 24) & 0xff); } ////////////////////////////////////////////////////////////////////////////// // WRAPPER FUNCTIONS static constexpr MD5Digest Sum(const char* data, uint32_t n) { return IntermediateDataToMD5Digest(ProcessMessage(data, n)); } static constexpr uint64_t Hash64(const char* data, uint32_t n) { IntermediateData intermediate = ProcessMessage(data, n); return (static_cast(SwapEndian(intermediate.a)) << 32) | static_cast(SwapEndian(intermediate.b)); } static constexpr uint32_t Hash32(const char* data, uint32_t n) { IntermediateData intermediate = ProcessMessage(data, n); return SwapEndian(intermediate.a); } }; } // namespace internal // Implementations of the functions exposed in the public header. constexpr MD5Digest MD5SumConstexpr(const char* string) { return internal::MD5CE::Sum(string, internal::MD5CE::StringLength(string)); } constexpr MD5Digest MD5SumConstexpr(const char* string, uint32_t length) { return internal::MD5CE::Sum(string, length); } constexpr uint64_t MD5Hash64Constexpr(const char* string) { return internal::MD5CE::Hash64(string, internal::MD5CE::StringLength(string)); } constexpr uint64_t MD5Hash64Constexpr(const char* string, uint32_t length) { return internal::MD5CE::Hash64(string, length); } constexpr uint32_t MD5Hash32Constexpr(const char* string) { return internal::MD5CE::Hash32(string, internal::MD5CE::StringLength(string)); } constexpr uint32_t MD5Hash32Constexpr(const char* string, uint32_t length) { return internal::MD5CE::Hash32(string, length); } } // namespace base #endif // BASE_HASH_MD5_CONSTEXPR_INTERNAL_H_