/* Originally written by Bodo Moeller for the OpenSSL project. * ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the OpenSSL open source * license provided above. * * The elliptic curve binary polynomial software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems * Laboratories. */ #include #include #include #include #include #include #include "internal.h" #include "../../internal.h" // This file implements the wNAF-based interleaving multi-exponentiation method // at: // http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 // http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf // Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. // This is an array r[] of values that are either zero or odd with an // absolute value less than 2^w satisfying // scalar = \sum_j r[j]*2^j // where at most one of any w+1 consecutive digits is non-zero // with the exception that the most significant digit may be only // w-1 zeros away from that next non-zero digit. static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) { int window_val; int ok = 0; int8_t *r = NULL; int sign = 1; int bit, next_bit, mask; size_t len = 0, j; if (BN_is_zero(scalar)) { r = OPENSSL_malloc(1); if (!r) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); goto err; } r[0] = 0; *ret_len = 1; return r; } // 'int8_t' can represent integers with absolute values less than 2^7. if (w <= 0 || w > 7) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } bit = 1 << w; // at most 128 next_bit = bit << 1; // at most 256 mask = next_bit - 1; // at most 255 if (BN_is_negative(scalar)) { sign = -1; } len = BN_num_bits(scalar); // The modified wNAF may be one digit longer than binary representation // (*ret_len will be set to the actual length, i.e. at most // BN_num_bits(scalar) + 1). r = OPENSSL_malloc(len + 1); if (r == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); goto err; } window_val = scalar->d[0] & mask; j = 0; // If j+w+1 >= len, window_val will not increase. while (window_val != 0 || j + w + 1 < len) { int digit = 0; // 0 <= window_val <= 2^(w+1) if (window_val & 1) { // 0 < window_val < 2^(w+1) if (window_val & bit) { digit = window_val - next_bit; // -2^w < digit < 0 #if 1 // modified wNAF if (j + w + 1 >= len) { // special case for generating modified wNAFs: // no new bits will be added into window_val, // so using a positive digit here will decrease // the total length of the representation digit = window_val & (mask >> 1); // 0 < digit < 2^w } #endif } else { digit = window_val; // 0 < digit < 2^w } if (digit <= -bit || digit >= bit || !(digit & 1)) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } window_val -= digit; // Now window_val is 0 or 2^(w+1) in standard wNAF generation; // for modified window NAFs, it may also be 2^w. if (window_val != 0 && window_val != next_bit && window_val != bit) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } } r[j++] = sign * digit; window_val >>= 1; window_val += bit * BN_is_bit_set(scalar, j + w); if (window_val > next_bit) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } } if (j > len + 1) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } len = j; ok = 1; err: if (!ok) { OPENSSL_free(r); r = NULL; } if (ok) { *ret_len = len; } return r; } // TODO: table should be optimised for the wNAF-based implementation, // sometimes smaller windows will give better performance // (thus the boundaries should be increased) static size_t window_bits_for_scalar_size(size_t b) { if (b >= 2000) { return 6; } if (b >= 800) { return 5; } if (b >= 300) { return 4; } if (b >= 70) { return 3; } if (b >= 20) { return 2; } return 1; } int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar_raw, const EC_POINT *p, const EC_SCALAR *p_scalar_raw, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; const EC_POINT *generator = NULL; EC_POINT *tmp = NULL; size_t total_num = 0; size_t i, j; int k; int r_is_inverted = 0; int r_is_at_infinity = 1; size_t *wsize = NULL; // individual window sizes int8_t **wNAF = NULL; // individual wNAFs size_t *wNAF_len = NULL; size_t max_len = 0; size_t num_val = 0; EC_POINT **val = NULL; // precomputation EC_POINT **v; EC_POINT ***val_sub = NULL; // pointers to sub-arrays of 'val' int ret = 0; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } } BN_CTX_start(ctx); // Convert from |EC_SCALAR| to |BIGNUM|. |BIGNUM| is not constant-time, but // neither is the rest of this function. BIGNUM *g_scalar = NULL, *p_scalar = NULL; if (g_scalar_raw != NULL) { g_scalar = BN_CTX_get(ctx); if (g_scalar == NULL || !bn_set_words(g_scalar, g_scalar_raw->words, group->order.top)) { goto err; } } if (p_scalar_raw != NULL) { p_scalar = BN_CTX_get(ctx); if (p_scalar == NULL || !bn_set_words(p_scalar, p_scalar_raw->words, group->order.top)) { goto err; } } // TODO: This function used to take |points| and |scalars| as arrays of // |num| elements. The code below should be simplified to work in terms of |p| // and |p_scalar|. size_t num = p != NULL ? 1 : 0; const EC_POINT **points = p != NULL ? &p : NULL; BIGNUM **scalars = p != NULL ? &p_scalar : NULL; total_num = num; if (g_scalar != NULL) { generator = EC_GROUP_get0_generator(group); if (generator == NULL) { OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR); goto err; } ++total_num; // treat 'g_scalar' like 'num'-th element of 'scalars' } wsize = OPENSSL_malloc(total_num * sizeof(wsize[0])); wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0])); wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0])); val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0])); // Ensure wNAF is initialised in case we end up going to err. if (wNAF != NULL) { OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0])); } if (!wsize || !wNAF_len || !wNAF || !val_sub) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); goto err; } // num_val will be the total number of temporarily precomputed points num_val = 0; for (i = 0; i < total_num; i++) { size_t bits; bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar); wsize[i] = window_bits_for_scalar_size(bits); num_val += (size_t)1 << (wsize[i] - 1); wNAF[i] = compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]); if (wNAF[i] == NULL) { goto err; } if (wNAF_len[i] > max_len) { max_len = wNAF_len[i]; } } // All points we precompute now go into a single array 'val'. 'val_sub[i]' is // a pointer to the subarray for the i-th point. val = OPENSSL_malloc(num_val * sizeof(val[0])); if (val == NULL) { OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); goto err; } OPENSSL_memset(val, 0, num_val * sizeof(val[0])); // allocate points for precomputation v = val; for (i = 0; i < total_num; i++) { val_sub[i] = v; for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { *v = EC_POINT_new(group); if (*v == NULL) { goto err; } v++; } } if (!(v == val + num_val)) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } if (!(tmp = EC_POINT_new(group))) { goto err; } // prepare precomputed values: // val_sub[i][0] := points[i] // val_sub[i][1] := 3 * points[i] // val_sub[i][2] := 5 * points[i] // ... for (i = 0; i < total_num; i++) { if (i < num) { if (!EC_POINT_copy(val_sub[i][0], points[i])) { goto err; } } else if (!EC_POINT_copy(val_sub[i][0], generator)) { goto err; } if (wsize[i] > 1) { if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) { goto err; } for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) { goto err; } } } } #if 1 // optional; window_bits_for_scalar_size assumes we do this step if (!EC_POINTs_make_affine(group, num_val, val, ctx)) { goto err; } #endif r_is_at_infinity = 1; for (k = max_len - 1; k >= 0; k--) { if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) { goto err; } for (i = 0; i < total_num; i++) { if (wNAF_len[i] > (size_t)k) { int digit = wNAF[i][k]; int is_neg; if (digit) { is_neg = digit < 0; if (is_neg) { digit = -digit; } if (is_neg != r_is_inverted) { if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) { goto err; } r_is_inverted = !r_is_inverted; } // digit > 0 if (r_is_at_infinity) { if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) { goto err; } r_is_at_infinity = 0; } else { if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) { goto err; } } } } } } if (r_is_at_infinity) { if (!EC_POINT_set_to_infinity(group, r)) { goto err; } } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) { goto err; } ret = 1; err: if (ctx != NULL) { BN_CTX_end(ctx); } BN_CTX_free(new_ctx); EC_POINT_free(tmp); OPENSSL_free(wsize); OPENSSL_free(wNAF_len); if (wNAF != NULL) { for (i = 0; i < total_num; i++) { OPENSSL_free(wNAF[i]); } OPENSSL_free(wNAF); } if (val != NULL) { for (i = 0; i < num_val; i++) { EC_POINT_free(val[i]); } OPENSSL_free(val); } OPENSSL_free(val_sub); return ret; }