/* ==================================================================== * Copyright (c) 2008 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include "internal.h" #include "../../internal.h" #if !defined(OPENSSL_NO_ASM) && \ (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) || \ defined(OPENSSL_PPC64LE)) #define GHASH_ASM #endif #define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16)) #define REDUCE1BIT(V) \ do { \ if (sizeof(size_t) == 8) { \ uint64_t T = UINT64_C(0xe100000000000000) & (0 - ((V).lo & 1)); \ (V).lo = ((V).hi << 63) | ((V).lo >> 1); \ (V).hi = ((V).hi >> 1) ^ T; \ } else { \ uint32_t T = 0xe1000000U & (0 - (uint32_t)((V).lo & 1)); \ (V).lo = ((V).hi << 63) | ((V).lo >> 1); \ (V).hi = ((V).hi >> 1) ^ ((uint64_t)T << 32); \ } \ } while (0) // kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four // bits of a |size_t|. static const size_t kSizeTWithoutLower4Bits = (size_t) -16; static void gcm_init_4bit(u128 Htable[16], uint64_t H[2]) { u128 V; Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; Htable[8] = V; REDUCE1BIT(V); Htable[4] = V; REDUCE1BIT(V); Htable[2] = V; REDUCE1BIT(V); Htable[1] = V; Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; V = Htable[4]; Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; V = Htable[8]; Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; #if defined(GHASH_ASM) && defined(OPENSSL_ARM) for (int j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo; Htable[j].lo = V.hi; } #endif } #if !defined(GHASH_ASM) || defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE) static const size_t rem_4bit[16] = { PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)}; static void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]) { u128 Z; int cnt = 15; size_t rem, nlo, nhi; nlo = ((const uint8_t *)Xi)[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) { Z.hi ^= rem_4bit[rem]; } else { Z.hi ^= (uint64_t)rem_4bit[rem] << 32; } Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) { break; } nlo = ((const uint8_t *)Xi)[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) { Z.hi ^= rem_4bit[rem]; } else { Z.hi ^= (uint64_t)rem_4bit[rem] << 32; } Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } Xi[0] = CRYPTO_bswap8(Z.hi); Xi[1] = CRYPTO_bswap8(Z.lo); } // Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for // details... Compiler-generated code doesn't seem to give any // performance improvement, at least not on x86[_64]. It's here // mostly as reference and a placeholder for possible future // non-trivial optimization[s]... static void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len) { u128 Z; int cnt; size_t rem, nlo, nhi; do { cnt = 15; nlo = ((const uint8_t *)Xi)[15]; nlo ^= inp[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) { Z.hi ^= rem_4bit[rem]; } else { Z.hi ^= (uint64_t)rem_4bit[rem] << 32; } Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) { break; } nlo = ((const uint8_t *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) { Z.hi ^= rem_4bit[rem]; } else { Z.hi ^= (uint64_t)rem_4bit[rem] << 32; } Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } Xi[0] = CRYPTO_bswap8(Z.hi); Xi[1] = CRYPTO_bswap8(Z.lo); } while (inp += 16, len -= 16); } #else // GHASH_ASM void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #endif #define GCM_MUL(ctx, Xi) gcm_gmult_4bit((ctx)->Xi.u, (ctx)->Htable) #if defined(GHASH_ASM) #define GHASH(ctx, in, len) gcm_ghash_4bit((ctx)->Xi.u, (ctx)->Htable, in, len) // GHASH_CHUNK is "stride parameter" missioned to mitigate cache // trashing effect. In other words idea is to hash data while it's // still in L1 cache after encryption pass... #define GHASH_CHUNK (3 * 1024) #endif #if defined(GHASH_ASM) #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) #define GCM_FUNCREF_4BIT void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #if defined(OPENSSL_X86_64) #define GHASH_ASM_X86_64 void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, size_t len); #define AESNI_GCM size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, const void *key, uint8_t ivec[16], uint64_t *Xi); size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, const void *key, uint8_t ivec[16], uint64_t *Xi); #endif #if defined(OPENSSL_X86) #define GHASH_ASM_X86 void gcm_gmult_4bit_mmx(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_mmx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #endif #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) #include #if __ARM_ARCH__ >= 7 #define GHASH_ASM_ARM #define GCM_FUNCREF_4BIT static int pmull_capable(void) { return CRYPTO_is_ARMv8_PMULL_capable(); } void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #if defined(OPENSSL_ARM) // 32-bit ARM also has support for doing GCM with NEON instructions. static int neon_capable(void) { return CRYPTO_is_NEON_capable(); } void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #else // AArch64 only has the ARMv8 versions of functions. static int neon_capable(void) { return 0; } static void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]) { abort(); } static void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]) { abort(); } static void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len) { abort(); } #endif #endif #elif defined(OPENSSL_PPC64LE) #define GHASH_ASM_PPC64LE #define GCM_FUNCREF_4BIT void gcm_init_p8(u128 Htable[16], const uint64_t Xi[2]); void gcm_gmult_p8(uint64_t Xi[2], const u128 Htable[16]); void gcm_ghash_p8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len); #endif #endif #ifdef GCM_FUNCREF_4BIT #undef GCM_MUL #define GCM_MUL(ctx, Xi) (*gcm_gmult_p)((ctx)->Xi.u, (ctx)->Htable) #ifdef GHASH #undef GHASH #define GHASH(ctx, in, len) (*gcm_ghash_p)((ctx)->Xi.u, (ctx)->Htable, in, len) #endif #endif void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, u128 *out_key, u128 out_table[16], int *out_is_avx, const uint8_t *gcm_key) { *out_is_avx = 0; union { uint64_t u[2]; uint8_t c[16]; } H; OPENSSL_memcpy(H.c, gcm_key, 16); // H is stored in host byte order H.u[0] = CRYPTO_bswap8(H.u[0]); H.u[1] = CRYPTO_bswap8(H.u[1]); OPENSSL_memcpy(out_key, H.c, 16); #if defined(GHASH_ASM_X86_64) if (crypto_gcm_clmul_enabled()) { if (((OPENSSL_ia32cap_get()[1] >> 22) & 0x41) == 0x41) { // AVX+MOVBE gcm_init_avx(out_table, H.u); *out_mult = gcm_gmult_avx; *out_hash = gcm_ghash_avx; *out_is_avx = 1; return; } gcm_init_clmul(out_table, H.u); *out_mult = gcm_gmult_clmul; *out_hash = gcm_ghash_clmul; return; } #elif defined(GHASH_ASM_X86) if (crypto_gcm_clmul_enabled()) { gcm_init_clmul(out_table, H.u); *out_mult = gcm_gmult_clmul; *out_hash = gcm_ghash_clmul; return; } #elif defined(GHASH_ASM_ARM) if (pmull_capable()) { gcm_init_v8(out_table, H.u); *out_mult = gcm_gmult_v8; *out_hash = gcm_ghash_v8; return; } if (neon_capable()) { gcm_init_neon(out_table, H.u); *out_mult = gcm_gmult_neon; *out_hash = gcm_ghash_neon; return; } #elif defined(GHASH_ASM_PPC64LE) if (CRYPTO_is_PPC64LE_vcrypto_capable()) { gcm_init_p8(out_table, H.u); *out_mult = gcm_gmult_p8; *out_hash = gcm_ghash_p8; return; } #endif gcm_init_4bit(out_table, H.u); #if defined(GHASH_ASM_X86) *out_mult = gcm_gmult_4bit_mmx; *out_hash = gcm_ghash_4bit_mmx; #else *out_mult = gcm_gmult_4bit; *out_hash = gcm_ghash_4bit; #endif } void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *aes_key, block128_f block, int is_aesni_encrypt) { OPENSSL_memset(ctx, 0, sizeof(*ctx)); ctx->block = block; uint8_t gcm_key[16]; OPENSSL_memset(gcm_key, 0, sizeof(gcm_key)); (*block)(gcm_key, gcm_key, aes_key); int is_avx; CRYPTO_ghash_init(&ctx->gmult, &ctx->ghash, &ctx->H, ctx->Htable, &is_avx, gcm_key); ctx->use_aesni_gcm_crypt = (is_avx && is_aesni_encrypt) ? 1 : 0; } void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key, const uint8_t *iv, size_t len) { unsigned int ctr; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; #endif ctx->Yi.u[0] = 0; ctx->Yi.u[1] = 0; ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; ctx->len.u[0] = 0; // AAD length ctx->len.u[1] = 0; // message length ctx->ares = 0; ctx->mres = 0; if (len == 12) { OPENSSL_memcpy(ctx->Yi.c, iv, 12); ctx->Yi.c[15] = 1; ctr = 1; } else { uint64_t len0 = len; while (len >= 16) { for (size_t i = 0; i < 16; ++i) { ctx->Yi.c[i] ^= iv[i]; } GCM_MUL(ctx, Yi); iv += 16; len -= 16; } if (len) { for (size_t i = 0; i < len; ++i) { ctx->Yi.c[i] ^= iv[i]; } GCM_MUL(ctx, Yi); } len0 <<= 3; ctx->Yi.u[1] ^= CRYPTO_bswap8(len0); GCM_MUL(ctx, Yi); ctr = CRYPTO_bswap4(ctx->Yi.d[3]); } (*ctx->block)(ctx->Yi.c, ctx->EK0.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); } int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) { unsigned int n; uint64_t alen = ctx->len.u[0]; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; #ifdef GHASH void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len) = ctx->ghash; #endif #endif if (ctx->len.u[1]) { return 0; } alen += len; if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) { return 0; } ctx->len.u[0] = alen; n = ctx->ares; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(aad++); --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx, Xi); } else { ctx->ares = n; return 1; } } // Process a whole number of blocks. #ifdef GHASH size_t len_blocks = len & kSizeTWithoutLower4Bits; if (len_blocks != 0) { GHASH(ctx, aad, len_blocks); aad += len_blocks; len -= len_blocks; } #else while (len >= 16) { for (size_t i = 0; i < 16; ++i) { ctx->Xi.c[i] ^= aad[i]; } GCM_MUL(ctx, Xi); aad += 16; len -= 16; } #endif // Process the remainder. if (len != 0) { n = (unsigned int)len; for (size_t i = 0; i < len; ++i) { ctx->Xi.c[i] ^= aad[i]; } } ctx->ares = n; return 1; } int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key, const uint8_t *in, uint8_t *out, size_t len) { unsigned int n, ctr; uint64_t mlen = ctx->len.u[1]; block128_f block = ctx->block; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; #ifdef GHASH void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len) = ctx->ghash; #endif #endif mlen += len; if (mlen > ((UINT64_C(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) { return 0; } ctx->len.u[1] = mlen; if (ctx->ares) { // First call to encrypt finalizes GHASH(AAD) GCM_MUL(ctx, Xi); ctx->ares = 0; } ctr = CRYPTO_bswap4(ctx->Yi.d[3]); n = ctx->mres; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx, Xi); } else { ctx->mres = n; return 1; } } if (STRICT_ALIGNMENT && ((uintptr_t)in | (uintptr_t)out) % sizeof(size_t) != 0) { for (size_t i = 0; i < len; ++i) { if (n == 0) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); } ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (n == 0) { GCM_MUL(ctx, Xi); } } ctx->mres = n; return 1; } #if defined(GHASH) && defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; while (j) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); for (size_t i = 0; i < 16; i += sizeof(size_t)) { store_word_le(out + i, load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); } out += 16; in += 16; j -= 16; } GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); len -= GHASH_CHUNK; } size_t len_blocks = len & kSizeTWithoutLower4Bits; if (len_blocks != 0) { while (len >= 16) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); for (size_t i = 0; i < 16; i += sizeof(size_t)) { store_word_le(out + i, load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); } out += 16; in += 16; len -= 16; } GHASH(ctx, out - len_blocks, len_blocks); } #else while (len >= 16) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); for (size_t i = 0; i < 16; i += sizeof(size_t)) { size_t tmp = load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]; store_word_le(out + i, tmp); ctx->Xi.t[i / sizeof(size_t)] ^= tmp; } GCM_MUL(ctx, Xi); out += 16; in += 16; len -= 16; } #endif if (len) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 1; } int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key, const unsigned char *in, unsigned char *out, size_t len) { unsigned int n, ctr; uint64_t mlen = ctx->len.u[1]; block128_f block = ctx->block; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; #ifdef GHASH void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len) = ctx->ghash; #endif #endif mlen += len; if (mlen > ((UINT64_C(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) { return 0; } ctx->len.u[1] = mlen; if (ctx->ares) { // First call to decrypt finalizes GHASH(AAD) GCM_MUL(ctx, Xi); ctx->ares = 0; } ctr = CRYPTO_bswap4(ctx->Yi.d[3]); n = ctx->mres; if (n) { while (n && len) { uint8_t c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx, Xi); } else { ctx->mres = n; return 1; } } if (STRICT_ALIGNMENT && ((uintptr_t)in | (uintptr_t)out) % sizeof(size_t) != 0) { for (size_t i = 0; i < len; ++i) { uint8_t c; if (n == 0) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); } c = in[i]; out[i] = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; n = (n + 1) % 16; if (n == 0) { GCM_MUL(ctx, Xi); } } ctx->mres = n; return 1; } #if defined(GHASH) && defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; GHASH(ctx, in, GHASH_CHUNK); while (j) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); for (size_t i = 0; i < 16; i += sizeof(size_t)) { store_word_le(out + i, load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); } out += 16; in += 16; j -= 16; } len -= GHASH_CHUNK; } size_t len_blocks = len & kSizeTWithoutLower4Bits; if (len_blocks != 0) { GHASH(ctx, in, len_blocks); while (len >= 16) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); for (size_t i = 0; i < 16; i += sizeof(size_t)) { store_word_le(out + i, load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); } out += 16; in += 16; len -= 16; } } #else while (len >= 16) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); for (size_t i = 0; i < 16; i += sizeof(size_t)) { size_t c = load_word_le(in + i); store_word_le(out + i, c ^ ctx->EKi.t[i / sizeof(size_t)]); ctx->Xi.t[i / sizeof(size_t)] ^= c; } GCM_MUL(ctx, Xi); out += 16; in += 16; len -= 16; } #endif if (len) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); while (len--) { uint8_t c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 1; } int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const void *key, const uint8_t *in, uint8_t *out, size_t len, ctr128_f stream) { unsigned int n, ctr; uint64_t mlen = ctx->len.u[1]; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; #ifdef GHASH void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len) = ctx->ghash; #endif #endif mlen += len; if (mlen > ((UINT64_C(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) { return 0; } ctx->len.u[1] = mlen; if (ctx->ares) { // First call to encrypt finalizes GHASH(AAD) GCM_MUL(ctx, Xi); ctx->ares = 0; } n = ctx->mres; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx, Xi); } else { ctx->mres = n; return 1; } } #if defined(AESNI_GCM) if (ctx->use_aesni_gcm_crypt) { // |aesni_gcm_encrypt| may not process all the input given to it. It may // not process *any* of its input if it is deemed too small. size_t bulk = aesni_gcm_encrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); in += bulk; out += bulk; len -= bulk; } #endif ctr = CRYPTO_bswap4(ctx->Yi.d[3]); #if defined(GHASH) while (len >= GHASH_CHUNK) { (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); GHASH(ctx, out, GHASH_CHUNK); out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } #endif size_t i = len & kSizeTWithoutLower4Bits; if (i != 0) { size_t j = i / 16; (*stream)(in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); in += i; len -= i; #if defined(GHASH) GHASH(ctx, out, i); out += i; #else while (j--) { for (i = 0; i < 16; ++i) { ctx->Xi.c[i] ^= out[i]; } GCM_MUL(ctx, Xi); out += 16; } #endif } if (len) { (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 1; } int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const void *key, const uint8_t *in, uint8_t *out, size_t len, ctr128_f stream) { unsigned int n, ctr; uint64_t mlen = ctx->len.u[1]; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; #ifdef GHASH void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, size_t len) = ctx->ghash; #endif #endif mlen += len; if (mlen > ((UINT64_C(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) { return 0; } ctx->len.u[1] = mlen; if (ctx->ares) { // First call to decrypt finalizes GHASH(AAD) GCM_MUL(ctx, Xi); ctx->ares = 0; } n = ctx->mres; if (n) { while (n && len) { uint8_t c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx, Xi); } else { ctx->mres = n; return 1; } } #if defined(AESNI_GCM) if (ctx->use_aesni_gcm_crypt) { // |aesni_gcm_decrypt| may not process all the input given to it. It may // not process *any* of its input if it is deemed too small. size_t bulk = aesni_gcm_decrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); in += bulk; out += bulk; len -= bulk; } #endif ctr = CRYPTO_bswap4(ctx->Yi.d[3]); #if defined(GHASH) while (len >= GHASH_CHUNK) { GHASH(ctx, in, GHASH_CHUNK); (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } #endif size_t i = len & kSizeTWithoutLower4Bits; if (i != 0) { size_t j = i / 16; #if defined(GHASH) GHASH(ctx, in, i); #else while (j--) { size_t k; for (k = 0; k < 16; ++k) { ctx->Xi.c[k] ^= in[k]; } GCM_MUL(ctx, Xi); in += 16; } j = i / 16; in -= i; #endif (*stream)(in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); out += i; in += i; len -= i; } if (len) { (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = CRYPTO_bswap4(ctr); while (len--) { uint8_t c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 1; } int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) { uint64_t alen = ctx->len.u[0] << 3; uint64_t clen = ctx->len.u[1] << 3; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; #endif if (ctx->mres || ctx->ares) { GCM_MUL(ctx, Xi); } alen = CRYPTO_bswap8(alen); clen = CRYPTO_bswap8(clen); ctx->Xi.u[0] ^= alen; ctx->Xi.u[1] ^= clen; GCM_MUL(ctx, Xi); ctx->Xi.u[0] ^= ctx->EK0.u[0]; ctx->Xi.u[1] ^= ctx->EK0.u[1]; if (tag && len <= sizeof(ctx->Xi)) { return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0; } else { return 0; } } void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { CRYPTO_gcm128_finish(ctx, NULL, 0); OPENSSL_memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); } #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) int crypto_gcm_clmul_enabled(void) { #ifdef GHASH_ASM const uint32_t *ia32cap = OPENSSL_ia32cap_get(); return (ia32cap[0] & (1 << 24)) && // check FXSR bit (ia32cap[1] & (1 << 1)); // check PCLMULQDQ bit #else return 0; #endif } #endif