/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/subtractor.h" #include #include #include "api/array_view.h" #include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h" #include "modules/audio_processing/aec3/fft_data.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_minmax.h" namespace webrtc { namespace { void PredictionError(const Aec3Fft& fft, const FftData& S, rtc::ArrayView y, std::array* e, std::array* s) { std::array tmp; fft.Ifft(S, &tmp); constexpr float kScale = 1.0f / kFftLengthBy2; std::transform(y.begin(), y.end(), tmp.begin() + kFftLengthBy2, e->begin(), [&](float a, float b) { return a - b * kScale; }); if (s) { for (size_t k = 0; k < s->size(); ++k) { (*s)[k] = kScale * tmp[k + kFftLengthBy2]; } } } void ScaleFilterOutput(rtc::ArrayView y, float factor, rtc::ArrayView e, rtc::ArrayView s) { RTC_DCHECK_EQ(y.size(), e.size()); RTC_DCHECK_EQ(y.size(), s.size()); for (size_t k = 0; k < y.size(); ++k) { s[k] *= factor; e[k] = y[k] - s[k]; } } } // namespace Subtractor::Subtractor(const EchoCanceller3Config& config, size_t num_render_channels, size_t num_capture_channels, ApmDataDumper* data_dumper, Aec3Optimization optimization) : fft_(), data_dumper_(data_dumper), optimization_(optimization), config_(config), num_capture_channels_(num_capture_channels), refined_filters_(num_capture_channels_), coarse_filter_(num_capture_channels_), refined_gains_(num_capture_channels_), coarse_gains_(num_capture_channels_), filter_misadjustment_estimators_(num_capture_channels_), poor_coarse_filter_counters_(num_capture_channels_, 0), refined_frequency_responses_( num_capture_channels_, std::vector>( std::max(config_.filter.refined_initial.length_blocks, config_.filter.refined.length_blocks), std::array())), refined_impulse_responses_( num_capture_channels_, std::vector(GetTimeDomainLength(std::max( config_.filter.refined_initial.length_blocks, config_.filter.refined.length_blocks)), 0.f)) { for (size_t ch = 0; ch < num_capture_channels_; ++ch) { refined_filters_[ch] = std::make_unique( config_.filter.refined.length_blocks, config_.filter.refined_initial.length_blocks, config.filter.config_change_duration_blocks, num_render_channels, optimization, data_dumper_); coarse_filter_[ch] = std::make_unique( config_.filter.coarse.length_blocks, config_.filter.coarse_initial.length_blocks, config.filter.config_change_duration_blocks, num_render_channels, optimization, data_dumper_); refined_gains_[ch] = std::make_unique( config_.filter.refined_initial, config_.filter.config_change_duration_blocks); coarse_gains_[ch] = std::make_unique( config_.filter.coarse_initial, config.filter.config_change_duration_blocks); } RTC_DCHECK(data_dumper_); for (size_t ch = 0; ch < num_capture_channels_; ++ch) { for (auto& H2_k : refined_frequency_responses_[ch]) { H2_k.fill(0.f); } } } Subtractor::~Subtractor() = default; void Subtractor::HandleEchoPathChange( const EchoPathVariability& echo_path_variability) { const auto full_reset = [&]() { for (size_t ch = 0; ch < num_capture_channels_; ++ch) { refined_filters_[ch]->HandleEchoPathChange(); coarse_filter_[ch]->HandleEchoPathChange(); refined_gains_[ch]->HandleEchoPathChange(echo_path_variability); coarse_gains_[ch]->HandleEchoPathChange(); refined_gains_[ch]->SetConfig(config_.filter.refined_initial, true); coarse_gains_[ch]->SetConfig(config_.filter.coarse_initial, true); refined_filters_[ch]->SetSizePartitions( config_.filter.refined_initial.length_blocks, true); coarse_filter_[ch]->SetSizePartitions( config_.filter.coarse_initial.length_blocks, true); } }; if (echo_path_variability.delay_change != EchoPathVariability::DelayAdjustment::kNone) { full_reset(); } if (echo_path_variability.gain_change) { for (size_t ch = 0; ch < num_capture_channels_; ++ch) { refined_gains_[ch]->HandleEchoPathChange(echo_path_variability); } } } void Subtractor::ExitInitialState() { for (size_t ch = 0; ch < num_capture_channels_; ++ch) { refined_gains_[ch]->SetConfig(config_.filter.refined, false); coarse_gains_[ch]->SetConfig(config_.filter.coarse, false); refined_filters_[ch]->SetSizePartitions( config_.filter.refined.length_blocks, false); coarse_filter_[ch]->SetSizePartitions(config_.filter.coarse.length_blocks, false); } } void Subtractor::Process(const RenderBuffer& render_buffer, const std::vector>& capture, const RenderSignalAnalyzer& render_signal_analyzer, const AecState& aec_state, rtc::ArrayView outputs) { RTC_DCHECK_EQ(num_capture_channels_, capture.size()); // Compute the render powers. const bool same_filter_sizes = refined_filters_[0]->SizePartitions() == coarse_filter_[0]->SizePartitions(); std::array X2_refined; std::array X2_coarse_data; auto& X2_coarse = same_filter_sizes ? X2_refined : X2_coarse_data; if (same_filter_sizes) { render_buffer.SpectralSum(refined_filters_[0]->SizePartitions(), &X2_refined); } else if (refined_filters_[0]->SizePartitions() > coarse_filter_[0]->SizePartitions()) { render_buffer.SpectralSums(coarse_filter_[0]->SizePartitions(), refined_filters_[0]->SizePartitions(), &X2_coarse, &X2_refined); } else { render_buffer.SpectralSums(refined_filters_[0]->SizePartitions(), coarse_filter_[0]->SizePartitions(), &X2_refined, &X2_coarse); } // Process all capture channels for (size_t ch = 0; ch < num_capture_channels_; ++ch) { RTC_DCHECK_EQ(kBlockSize, capture[ch].size()); SubtractorOutput& output = outputs[ch]; rtc::ArrayView y = capture[ch]; FftData& E_refined = output.E_refined; FftData E_coarse; std::array& e_refined = output.e_refined; std::array& e_coarse = output.e_coarse; FftData S; FftData& G = S; // Form the outputs of the refined and coarse filters. refined_filters_[ch]->Filter(render_buffer, &S); PredictionError(fft_, S, y, &e_refined, &output.s_refined); coarse_filter_[ch]->Filter(render_buffer, &S); PredictionError(fft_, S, y, &e_coarse, &output.s_coarse); // Compute the signal powers in the subtractor output. output.ComputeMetrics(y); // Adjust the filter if needed. bool refined_filters_adjusted = false; filter_misadjustment_estimators_[ch].Update(output); if (filter_misadjustment_estimators_[ch].IsAdjustmentNeeded()) { float scale = filter_misadjustment_estimators_[ch].GetMisadjustment(); refined_filters_[ch]->ScaleFilter(scale); for (auto& h_k : refined_impulse_responses_[ch]) { h_k *= scale; } ScaleFilterOutput(y, scale, e_refined, output.s_refined); filter_misadjustment_estimators_[ch].Reset(); refined_filters_adjusted = true; } // Compute the FFts of the refined and coarse filter outputs. fft_.ZeroPaddedFft(e_refined, Aec3Fft::Window::kHanning, &E_refined); fft_.ZeroPaddedFft(e_coarse, Aec3Fft::Window::kHanning, &E_coarse); // Compute spectra for future use. E_coarse.Spectrum(optimization_, output.E2_coarse); E_refined.Spectrum(optimization_, output.E2_refined); // Update the refined filter. if (!refined_filters_adjusted) { std::array erl; ComputeErl(optimization_, refined_frequency_responses_[ch], erl); refined_gains_[ch]->Compute(X2_refined, render_signal_analyzer, output, erl, refined_filters_[ch]->SizePartitions(), aec_state.SaturatedCapture(), &G); } else { G.re.fill(0.f); G.im.fill(0.f); } refined_filters_[ch]->Adapt(render_buffer, G, &refined_impulse_responses_[ch]); refined_filters_[ch]->ComputeFrequencyResponse( &refined_frequency_responses_[ch]); if (ch == 0) { data_dumper_->DumpRaw("aec3_subtractor_G_refined", G.re); data_dumper_->DumpRaw("aec3_subtractor_G_refined", G.im); } // Update the coarse filter. poor_coarse_filter_counters_[ch] = output.e2_refined < output.e2_coarse ? poor_coarse_filter_counters_[ch] + 1 : 0; if (poor_coarse_filter_counters_[ch] < 5) { coarse_gains_[ch]->Compute(X2_coarse, render_signal_analyzer, E_coarse, coarse_filter_[ch]->SizePartitions(), aec_state.SaturatedCapture(), &G); } else { poor_coarse_filter_counters_[ch] = 0; coarse_filter_[ch]->SetFilter(refined_filters_[ch]->SizePartitions(), refined_filters_[ch]->GetFilter()); coarse_gains_[ch]->Compute(X2_coarse, render_signal_analyzer, E_refined, coarse_filter_[ch]->SizePartitions(), aec_state.SaturatedCapture(), &G); } coarse_filter_[ch]->Adapt(render_buffer, G); if (ch == 0) { data_dumper_->DumpRaw("aec3_subtractor_G_coarse", G.re); data_dumper_->DumpRaw("aec3_subtractor_G_coarse", G.im); filter_misadjustment_estimators_[ch].Dump(data_dumper_); DumpFilters(); } std::for_each(e_refined.begin(), e_refined.end(), [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); if (ch == 0) { data_dumper_->DumpWav("aec3_refined_filters_output", kBlockSize, &e_refined[0], 16000, 1); data_dumper_->DumpWav("aec3_coarse_filter_output", kBlockSize, &e_coarse[0], 16000, 1); } } } void Subtractor::FilterMisadjustmentEstimator::Update( const SubtractorOutput& output) { e2_acum_ += output.e2_refined; y2_acum_ += output.y2; if (++n_blocks_acum_ == n_blocks_) { if (y2_acum_ > n_blocks_ * 200.f * 200.f * kBlockSize) { float update = (e2_acum_ / y2_acum_); if (e2_acum_ > n_blocks_ * 7500.f * 7500.f * kBlockSize) { // Duration equal to blockSizeMs * n_blocks_ * 4. overhang_ = 4; } else { overhang_ = std::max(overhang_ - 1, 0); } if ((update < inv_misadjustment_) || (overhang_ > 0)) { inv_misadjustment_ += 0.1f * (update - inv_misadjustment_); } } e2_acum_ = 0.f; y2_acum_ = 0.f; n_blocks_acum_ = 0; } } void Subtractor::FilterMisadjustmentEstimator::Reset() { e2_acum_ = 0.f; y2_acum_ = 0.f; n_blocks_acum_ = 0; inv_misadjustment_ = 0.f; overhang_ = 0.f; } void Subtractor::FilterMisadjustmentEstimator::Dump( ApmDataDumper* data_dumper) const { data_dumper->DumpRaw("aec3_inv_misadjustment_factor", inv_misadjustment_); } } // namespace webrtc