/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/rtp_sender.h" #include #include #include #include #include #include "absl/strings/match.h" #include "api/array_view.h" #include "api/rtc_event_log/rtc_event_log.h" #include "logging/rtc_event_log/events/rtc_event_rtp_packet_outgoing.h" #include "modules/rtp_rtcp/include/rtp_cvo.h" #include "modules/rtp_rtcp/source/byte_io.h" #include "modules/rtp_rtcp/source/rtp_generic_frame_descriptor_extension.h" #include "modules/rtp_rtcp/source/rtp_header_extensions.h" #include "modules/rtp_rtcp/source/rtp_packet_to_send.h" #include "modules/rtp_rtcp/source/time_util.h" #include "rtc_base/arraysize.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/field_trial_parser.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_minmax.h" #include "rtc_base/rate_limiter.h" #include "rtc_base/time_utils.h" namespace webrtc { namespace { // Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP. constexpr size_t kMaxPaddingLength = 224; constexpr size_t kMinAudioPaddingLength = 50; constexpr size_t kRtpHeaderLength = 12; constexpr uint16_t kMaxInitRtpSeqNumber = 32767; // 2^15 -1. constexpr uint32_t kTimestampTicksPerMs = 90; // Min size needed to get payload padding from packet history. constexpr int kMinPayloadPaddingBytes = 50; template constexpr RtpExtensionSize CreateExtensionSize() { return {Extension::kId, Extension::kValueSizeBytes}; } template constexpr RtpExtensionSize CreateMaxExtensionSize() { return {Extension::kId, Extension::kMaxValueSizeBytes}; } // Size info for header extensions that might be used in padding or FEC packets. constexpr RtpExtensionSize kFecOrPaddingExtensionSizes[] = { CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateMaxExtensionSize(), CreateExtensionSize(), }; // Size info for header extensions that might be used in video packets. constexpr RtpExtensionSize kVideoExtensionSizes[] = { CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateMaxExtensionSize(), CreateMaxExtensionSize(), CreateMaxExtensionSize(), {RtpGenericFrameDescriptorExtension00::kId, RtpGenericFrameDescriptorExtension00::kMaxSizeBytes}, }; // Size info for header extensions that might be used in audio packets. constexpr RtpExtensionSize kAudioExtensionSizes[] = { CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateExtensionSize(), CreateMaxExtensionSize(), CreateMaxExtensionSize(), CreateMaxExtensionSize(), }; // Non-volatile extensions can be expected on all packets, if registered. // Volatile ones, such as VideoContentTypeExtension which is only set on // key-frames, are removed to simplify overhead calculations at the expense of // some accuracy. bool IsNonVolatile(RTPExtensionType type) { switch (type) { case kRtpExtensionTransmissionTimeOffset: case kRtpExtensionAudioLevel: case kRtpExtensionAbsoluteSendTime: case kRtpExtensionTransportSequenceNumber: case kRtpExtensionTransportSequenceNumber02: case kRtpExtensionRtpStreamId: case kRtpExtensionMid: case kRtpExtensionGenericFrameDescriptor00: case kRtpExtensionGenericFrameDescriptor02: return true; case kRtpExtensionInbandComfortNoise: case kRtpExtensionAbsoluteCaptureTime: case kRtpExtensionVideoRotation: case kRtpExtensionPlayoutDelay: case kRtpExtensionVideoContentType: case kRtpExtensionVideoTiming: case kRtpExtensionRepairedRtpStreamId: case kRtpExtensionColorSpace: return false; case kRtpExtensionNone: case kRtpExtensionNumberOfExtensions: RTC_NOTREACHED(); return false; } } bool HasBweExtension(const RtpHeaderExtensionMap& extensions_map) { return extensions_map.IsRegistered(kRtpExtensionTransportSequenceNumber) || extensions_map.IsRegistered(kRtpExtensionTransportSequenceNumber02) || extensions_map.IsRegistered(kRtpExtensionAbsoluteSendTime) || extensions_map.IsRegistered(kRtpExtensionTransmissionTimeOffset); } double GetMaxPaddingSizeFactor(const WebRtcKeyValueConfig* field_trials) { // Too low factor means RTX payload padding is rarely used and ineffective. // Too high means we risk interrupting regular media packets. // In practice, 3x seems to yield reasonable results. constexpr double kDefaultFactor = 3.0; if (!field_trials) { return kDefaultFactor; } FieldTrialOptional factor("factor", kDefaultFactor); ParseFieldTrial({&factor}, field_trials->Lookup("WebRTC-LimitPaddingSize")); RTC_CHECK_GE(factor.Value(), 0.0); return factor.Value(); } } // namespace RTPSender::RTPSender(const RtpRtcpInterface::Configuration& config, RtpPacketHistory* packet_history, RtpPacketSender* packet_sender) : clock_(config.clock), random_(clock_->TimeInMicroseconds()), audio_configured_(config.audio), ssrc_(config.local_media_ssrc), rtx_ssrc_(config.rtx_send_ssrc), flexfec_ssrc_(config.fec_generator ? config.fec_generator->FecSsrc() : absl::nullopt), max_padding_size_factor_(GetMaxPaddingSizeFactor(config.field_trials)), packet_history_(packet_history), paced_sender_(packet_sender), sending_media_(true), // Default to sending media. max_packet_size_(IP_PACKET_SIZE - 28), // Default is IP-v4/UDP. last_payload_type_(-1), rtp_header_extension_map_(config.extmap_allow_mixed), max_media_packet_header_(kRtpHeaderSize), max_padding_fec_packet_header_(kRtpHeaderSize), // RTP variables sequence_number_forced_(false), always_send_mid_and_rid_(config.always_send_mid_and_rid), ssrc_has_acked_(false), rtx_ssrc_has_acked_(false), last_rtp_timestamp_(0), capture_time_ms_(0), last_timestamp_time_ms_(0), last_packet_marker_bit_(false), csrcs_(), rtx_(kRtxOff), supports_bwe_extension_(false), retransmission_rate_limiter_(config.retransmission_rate_limiter) { // This random initialization is not intended to be cryptographic strong. timestamp_offset_ = random_.Rand(); // Random start, 16 bits. Can't be 0. sequence_number_rtx_ = random_.Rand(1, kMaxInitRtpSeqNumber); sequence_number_ = random_.Rand(1, kMaxInitRtpSeqNumber); RTC_DCHECK(paced_sender_); RTC_DCHECK(packet_history_); } RTPSender::~RTPSender() { // TODO(tommi): Use a thread checker to ensure the object is created and // deleted on the same thread. At the moment this isn't possible due to // voe::ChannelOwner in voice engine. To reproduce, run: // voe_auto_test --automated --gtest_filter=*MixManyChannelsForStressOpus // TODO(tommi,holmer): We don't grab locks in the dtor before accessing member // variables but we grab them in all other methods. (what's the design?) // Start documenting what thread we're on in what method so that it's easier // to understand performance attributes and possibly remove locks. } rtc::ArrayView RTPSender::FecExtensionSizes() { return rtc::MakeArrayView(kFecOrPaddingExtensionSizes, arraysize(kFecOrPaddingExtensionSizes)); } rtc::ArrayView RTPSender::VideoExtensionSizes() { return rtc::MakeArrayView(kVideoExtensionSizes, arraysize(kVideoExtensionSizes)); } rtc::ArrayView RTPSender::AudioExtensionSizes() { return rtc::MakeArrayView(kAudioExtensionSizes, arraysize(kAudioExtensionSizes)); } void RTPSender::SetExtmapAllowMixed(bool extmap_allow_mixed) { MutexLock lock(&send_mutex_); rtp_header_extension_map_.SetExtmapAllowMixed(extmap_allow_mixed); } int32_t RTPSender::RegisterRtpHeaderExtension(RTPExtensionType type, uint8_t id) { MutexLock lock(&send_mutex_); bool registered = rtp_header_extension_map_.RegisterByType(id, type); supports_bwe_extension_ = HasBweExtension(rtp_header_extension_map_); UpdateHeaderSizes(); return registered ? 0 : -1; } bool RTPSender::RegisterRtpHeaderExtension(absl::string_view uri, int id) { MutexLock lock(&send_mutex_); bool registered = rtp_header_extension_map_.RegisterByUri(id, uri); supports_bwe_extension_ = HasBweExtension(rtp_header_extension_map_); UpdateHeaderSizes(); return registered; } bool RTPSender::IsRtpHeaderExtensionRegistered(RTPExtensionType type) const { MutexLock lock(&send_mutex_); return rtp_header_extension_map_.IsRegistered(type); } int32_t RTPSender::DeregisterRtpHeaderExtension(RTPExtensionType type) { MutexLock lock(&send_mutex_); rtp_header_extension_map_.Deregister(type); supports_bwe_extension_ = HasBweExtension(rtp_header_extension_map_); UpdateHeaderSizes(); return 0; } void RTPSender::DeregisterRtpHeaderExtension(absl::string_view uri) { MutexLock lock(&send_mutex_); rtp_header_extension_map_.Deregister(uri); supports_bwe_extension_ = HasBweExtension(rtp_header_extension_map_); UpdateHeaderSizes(); } void RTPSender::SetMaxRtpPacketSize(size_t max_packet_size) { RTC_DCHECK_GE(max_packet_size, 100); RTC_DCHECK_LE(max_packet_size, IP_PACKET_SIZE); MutexLock lock(&send_mutex_); max_packet_size_ = max_packet_size; } size_t RTPSender::MaxRtpPacketSize() const { return max_packet_size_; } void RTPSender::SetRtxStatus(int mode) { MutexLock lock(&send_mutex_); rtx_ = mode; } int RTPSender::RtxStatus() const { MutexLock lock(&send_mutex_); return rtx_; } void RTPSender::SetRtxPayloadType(int payload_type, int associated_payload_type) { MutexLock lock(&send_mutex_); RTC_DCHECK_LE(payload_type, 127); RTC_DCHECK_LE(associated_payload_type, 127); if (payload_type < 0) { RTC_LOG(LS_ERROR) << "Invalid RTX payload type: " << payload_type << "."; return; } rtx_payload_type_map_[associated_payload_type] = payload_type; } int32_t RTPSender::ReSendPacket(uint16_t packet_id) { // Try to find packet in RTP packet history. Also verify RTT here, so that we // don't retransmit too often. absl::optional stored_packet = packet_history_->GetPacketState(packet_id); if (!stored_packet || stored_packet->pending_transmission) { // Packet not found or already queued for retransmission, ignore. return 0; } const int32_t packet_size = static_cast(stored_packet->packet_size); const bool rtx = (RtxStatus() & kRtxRetransmitted) > 0; std::unique_ptr packet = packet_history_->GetPacketAndMarkAsPending( packet_id, [&](const RtpPacketToSend& stored_packet) { // Check if we're overusing retransmission bitrate. // TODO(sprang): Add histograms for nack success or failure // reasons. std::unique_ptr retransmit_packet; if (retransmission_rate_limiter_ && !retransmission_rate_limiter_->TryUseRate(packet_size)) { return retransmit_packet; } if (rtx) { retransmit_packet = BuildRtxPacket(stored_packet); } else { retransmit_packet = std::make_unique(stored_packet); } if (retransmit_packet) { retransmit_packet->set_retransmitted_sequence_number( stored_packet.SequenceNumber()); } return retransmit_packet; }); if (!packet) { return -1; } packet->set_packet_type(RtpPacketMediaType::kRetransmission); std::vector> packets; packets.emplace_back(std::move(packet)); paced_sender_->EnqueuePackets(std::move(packets)); return packet_size; } void RTPSender::OnReceivedAckOnSsrc(int64_t extended_highest_sequence_number) { MutexLock lock(&send_mutex_); bool update_required = !ssrc_has_acked_; ssrc_has_acked_ = true; if (update_required) { UpdateHeaderSizes(); } } void RTPSender::OnReceivedAckOnRtxSsrc( int64_t extended_highest_sequence_number) { MutexLock lock(&send_mutex_); rtx_ssrc_has_acked_ = true; } void RTPSender::OnReceivedNack( const std::vector& nack_sequence_numbers, int64_t avg_rtt) { packet_history_->SetRtt(5 + avg_rtt); for (uint16_t seq_no : nack_sequence_numbers) { const int32_t bytes_sent = ReSendPacket(seq_no); if (bytes_sent < 0) { // Failed to send one Sequence number. Give up the rest in this nack. RTC_LOG(LS_WARNING) << "Failed resending RTP packet " << seq_no << ", Discard rest of packets."; break; } } } bool RTPSender::SupportsPadding() const { MutexLock lock(&send_mutex_); return sending_media_ && supports_bwe_extension_; } bool RTPSender::SupportsRtxPayloadPadding() const { MutexLock lock(&send_mutex_); return sending_media_ && supports_bwe_extension_ && (rtx_ & kRtxRedundantPayloads); } std::vector> RTPSender::GeneratePadding( size_t target_size_bytes, bool media_has_been_sent) { // This method does not actually send packets, it just generates // them and puts them in the pacer queue. Since this should incur // low overhead, keep the lock for the scope of the method in order // to make the code more readable. std::vector> padding_packets; size_t bytes_left = target_size_bytes; if (SupportsRtxPayloadPadding()) { while (bytes_left >= kMinPayloadPaddingBytes) { std::unique_ptr packet = packet_history_->GetPayloadPaddingPacket( [&](const RtpPacketToSend& packet) -> std::unique_ptr { // Limit overshoot, generate <= |max_padding_size_factor_| * // target_size_bytes. const size_t max_overshoot_bytes = static_cast( ((max_padding_size_factor_ - 1.0) * target_size_bytes) + 0.5); if (packet.payload_size() + kRtxHeaderSize > max_overshoot_bytes + bytes_left) { return nullptr; } return BuildRtxPacket(packet); }); if (!packet) { break; } bytes_left -= std::min(bytes_left, packet->payload_size()); packet->set_packet_type(RtpPacketMediaType::kPadding); padding_packets.push_back(std::move(packet)); } } MutexLock lock(&send_mutex_); if (!sending_media_) { return {}; } size_t padding_bytes_in_packet; const size_t max_payload_size = max_packet_size_ - max_padding_fec_packet_header_; if (audio_configured_) { // Allow smaller padding packets for audio. padding_bytes_in_packet = rtc::SafeClamp( bytes_left, kMinAudioPaddingLength, rtc::SafeMin(max_payload_size, kMaxPaddingLength)); } else { // Always send full padding packets. This is accounted for by the // RtpPacketSender, which will make sure we don't send too much padding even // if a single packet is larger than requested. // We do this to avoid frequently sending small packets on higher bitrates. padding_bytes_in_packet = rtc::SafeMin(max_payload_size, kMaxPaddingLength); } while (bytes_left > 0) { auto padding_packet = std::make_unique(&rtp_header_extension_map_); padding_packet->set_packet_type(RtpPacketMediaType::kPadding); padding_packet->SetMarker(false); padding_packet->SetTimestamp(last_rtp_timestamp_); padding_packet->set_capture_time_ms(capture_time_ms_); if (rtx_ == kRtxOff) { if (last_payload_type_ == -1) { break; } // Without RTX we can't send padding in the middle of frames. // For audio marker bits doesn't mark the end of a frame and frames // are usually a single packet, so for now we don't apply this rule // for audio. if (!audio_configured_ && !last_packet_marker_bit_) { break; } padding_packet->SetSsrc(ssrc_); padding_packet->SetPayloadType(last_payload_type_); padding_packet->SetSequenceNumber(sequence_number_++); } else { // Without abs-send-time or transport sequence number a media packet // must be sent before padding so that the timestamps used for // estimation are correct. if (!media_has_been_sent && !(rtp_header_extension_map_.IsRegistered(AbsoluteSendTime::kId) || rtp_header_extension_map_.IsRegistered( TransportSequenceNumber::kId))) { break; } // Only change the timestamp of padding packets sent over RTX. // Padding only packets over RTP has to be sent as part of a media // frame (and therefore the same timestamp). int64_t now_ms = clock_->TimeInMilliseconds(); if (last_timestamp_time_ms_ > 0) { padding_packet->SetTimestamp(padding_packet->Timestamp() + (now_ms - last_timestamp_time_ms_) * kTimestampTicksPerMs); if (padding_packet->capture_time_ms() > 0) { padding_packet->set_capture_time_ms( padding_packet->capture_time_ms() + (now_ms - last_timestamp_time_ms_)); } } RTC_DCHECK(rtx_ssrc_); padding_packet->SetSsrc(*rtx_ssrc_); padding_packet->SetSequenceNumber(sequence_number_rtx_++); padding_packet->SetPayloadType(rtx_payload_type_map_.begin()->second); } if (rtp_header_extension_map_.IsRegistered(TransportSequenceNumber::kId)) { padding_packet->ReserveExtension(); } if (rtp_header_extension_map_.IsRegistered(TransmissionOffset::kId)) { padding_packet->ReserveExtension(); } if (rtp_header_extension_map_.IsRegistered(AbsoluteSendTime::kId)) { padding_packet->ReserveExtension(); } padding_packet->SetPadding(padding_bytes_in_packet); bytes_left -= std::min(bytes_left, padding_bytes_in_packet); padding_packets.push_back(std::move(padding_packet)); } return padding_packets; } bool RTPSender::SendToNetwork(std::unique_ptr packet) { RTC_DCHECK(packet); int64_t now_ms = clock_->TimeInMilliseconds(); auto packet_type = packet->packet_type(); RTC_CHECK(packet_type) << "Packet type must be set before sending."; if (packet->capture_time_ms() <= 0) { packet->set_capture_time_ms(now_ms); } std::vector> packets; packets.emplace_back(std::move(packet)); paced_sender_->EnqueuePackets(std::move(packets)); return true; } void RTPSender::EnqueuePackets( std::vector> packets) { RTC_DCHECK(!packets.empty()); int64_t now_ms = clock_->TimeInMilliseconds(); for (auto& packet : packets) { RTC_DCHECK(packet); RTC_CHECK(packet->packet_type().has_value()) << "Packet type must be set before sending."; if (packet->capture_time_ms() <= 0) { packet->set_capture_time_ms(now_ms); } } paced_sender_->EnqueuePackets(std::move(packets)); } size_t RTPSender::FecOrPaddingPacketMaxRtpHeaderLength() const { MutexLock lock(&send_mutex_); return max_padding_fec_packet_header_; } size_t RTPSender::ExpectedPerPacketOverhead() const { MutexLock lock(&send_mutex_); return max_media_packet_header_; } uint16_t RTPSender::AllocateSequenceNumber(uint16_t packets_to_send) { MutexLock lock(&send_mutex_); uint16_t first_allocated_sequence_number = sequence_number_; sequence_number_ += packets_to_send; return first_allocated_sequence_number; } std::unique_ptr RTPSender::AllocatePacket() const { MutexLock lock(&send_mutex_); // TODO(danilchap): Find better motivator and value for extra capacity. // RtpPacketizer might slightly miscalulate needed size, // SRTP may benefit from extra space in the buffer and do encryption in place // saving reallocation. // While sending slightly oversized packet increase chance of dropped packet, // it is better than crash on drop packet without trying to send it. static constexpr int kExtraCapacity = 16; auto packet = std::make_unique( &rtp_header_extension_map_, max_packet_size_ + kExtraCapacity); packet->SetSsrc(ssrc_); packet->SetCsrcs(csrcs_); // Reserve extensions, if registered, RtpSender set in SendToNetwork. packet->ReserveExtension(); packet->ReserveExtension(); packet->ReserveExtension(); // BUNDLE requires that the receiver "bind" the received SSRC to the values // in the MID and/or (R)RID header extensions if present. Therefore, the // sender can reduce overhead by omitting these header extensions once it // knows that the receiver has "bound" the SSRC. // This optimization can be configured by setting // |always_send_mid_and_rid_| appropriately. // // The algorithm here is fairly simple: Always attach a MID and/or RID (if // configured) to the outgoing packets until an RTCP receiver report comes // back for this SSRC. That feedback indicates the receiver must have // received a packet with the SSRC and header extension(s), so the sender // then stops attaching the MID and RID. if (always_send_mid_and_rid_ || !ssrc_has_acked_) { // These are no-ops if the corresponding header extension is not registered. if (!mid_.empty()) { packet->SetExtension(mid_); } if (!rid_.empty()) { packet->SetExtension(rid_); } } return packet; } bool RTPSender::AssignSequenceNumber(RtpPacketToSend* packet) { MutexLock lock(&send_mutex_); if (!sending_media_) return false; RTC_DCHECK(packet->Ssrc() == ssrc_); packet->SetSequenceNumber(sequence_number_++); // Remember marker bit to determine if padding can be inserted with // sequence number following |packet|. last_packet_marker_bit_ = packet->Marker(); // Remember payload type to use in the padding packet if rtx is disabled. last_payload_type_ = packet->PayloadType(); // Save timestamps to generate timestamp field and extensions for the padding. last_rtp_timestamp_ = packet->Timestamp(); last_timestamp_time_ms_ = clock_->TimeInMilliseconds(); capture_time_ms_ = packet->capture_time_ms(); return true; } void RTPSender::SetSendingMediaStatus(bool enabled) { MutexLock lock(&send_mutex_); sending_media_ = enabled; } bool RTPSender::SendingMedia() const { MutexLock lock(&send_mutex_); return sending_media_; } bool RTPSender::IsAudioConfigured() const { return audio_configured_; } void RTPSender::SetTimestampOffset(uint32_t timestamp) { MutexLock lock(&send_mutex_); timestamp_offset_ = timestamp; } uint32_t RTPSender::TimestampOffset() const { MutexLock lock(&send_mutex_); return timestamp_offset_; } void RTPSender::SetRid(const std::string& rid) { // RID is used in simulcast scenario when multiple layers share the same mid. MutexLock lock(&send_mutex_); RTC_DCHECK_LE(rid.length(), RtpStreamId::kMaxValueSizeBytes); rid_ = rid; UpdateHeaderSizes(); } void RTPSender::SetMid(const std::string& mid) { // This is configured via the API. MutexLock lock(&send_mutex_); RTC_DCHECK_LE(mid.length(), RtpMid::kMaxValueSizeBytes); mid_ = mid; UpdateHeaderSizes(); } void RTPSender::SetCsrcs(const std::vector& csrcs) { RTC_DCHECK_LE(csrcs.size(), kRtpCsrcSize); MutexLock lock(&send_mutex_); csrcs_ = csrcs; UpdateHeaderSizes(); } void RTPSender::SetSequenceNumber(uint16_t seq) { bool updated_sequence_number = false; { MutexLock lock(&send_mutex_); sequence_number_forced_ = true; if (sequence_number_ != seq) { updated_sequence_number = true; } sequence_number_ = seq; } if (updated_sequence_number) { // Sequence number series has been reset to a new value, clear RTP packet // history, since any packets there may conflict with new ones. packet_history_->Clear(); } } uint16_t RTPSender::SequenceNumber() const { MutexLock lock(&send_mutex_); return sequence_number_; } static void CopyHeaderAndExtensionsToRtxPacket(const RtpPacketToSend& packet, RtpPacketToSend* rtx_packet) { // Set the relevant fixed packet headers. The following are not set: // * Payload type - it is replaced in rtx packets. // * Sequence number - RTX has a separate sequence numbering. // * SSRC - RTX stream has its own SSRC. rtx_packet->SetMarker(packet.Marker()); rtx_packet->SetTimestamp(packet.Timestamp()); // Set the variable fields in the packet header: // * CSRCs - must be set before header extensions. // * Header extensions - replace Rid header with RepairedRid header. const std::vector csrcs = packet.Csrcs(); rtx_packet->SetCsrcs(csrcs); for (int extension_num = kRtpExtensionNone + 1; extension_num < kRtpExtensionNumberOfExtensions; ++extension_num) { auto extension = static_cast(extension_num); // Stream ID header extensions (MID, RSID) are sent per-SSRC. Since RTX // operates on a different SSRC, the presence and values of these header // extensions should be determined separately and not blindly copied. if (extension == kRtpExtensionMid || extension == kRtpExtensionRtpStreamId) { continue; } // Empty extensions should be supported, so not checking |source.empty()|. if (!packet.HasExtension(extension)) { continue; } rtc::ArrayView source = packet.FindExtension(extension); rtc::ArrayView destination = rtx_packet->AllocateExtension(extension, source.size()); // Could happen if any: // 1. Extension has 0 length. // 2. Extension is not registered in destination. // 3. Allocating extension in destination failed. if (destination.empty() || source.size() != destination.size()) { continue; } std::memcpy(destination.begin(), source.begin(), destination.size()); } } std::unique_ptr RTPSender::BuildRtxPacket( const RtpPacketToSend& packet) { std::unique_ptr rtx_packet; // Add original RTP header. { MutexLock lock(&send_mutex_); if (!sending_media_) return nullptr; RTC_DCHECK(rtx_ssrc_); // Replace payload type. auto kv = rtx_payload_type_map_.find(packet.PayloadType()); if (kv == rtx_payload_type_map_.end()) return nullptr; rtx_packet = std::make_unique(&rtp_header_extension_map_, max_packet_size_); rtx_packet->SetPayloadType(kv->second); // Replace sequence number. rtx_packet->SetSequenceNumber(sequence_number_rtx_++); // Replace SSRC. rtx_packet->SetSsrc(*rtx_ssrc_); CopyHeaderAndExtensionsToRtxPacket(packet, rtx_packet.get()); // RTX packets are sent on an SSRC different from the main media, so the // decision to attach MID and/or RRID header extensions is completely // separate from that of the main media SSRC. // // Note that RTX packets must used the RepairedRtpStreamId (RRID) header // extension instead of the RtpStreamId (RID) header extension even though // the payload is identical. if (always_send_mid_and_rid_ || !rtx_ssrc_has_acked_) { // These are no-ops if the corresponding header extension is not // registered. if (!mid_.empty()) { rtx_packet->SetExtension(mid_); } if (!rid_.empty()) { rtx_packet->SetExtension(rid_); } } } RTC_DCHECK(rtx_packet); uint8_t* rtx_payload = rtx_packet->AllocatePayload(packet.payload_size() + kRtxHeaderSize); if (rtx_payload == nullptr) return nullptr; // Add OSN (original sequence number). ByteWriter::WriteBigEndian(rtx_payload, packet.SequenceNumber()); // Add original payload data. auto payload = packet.payload(); memcpy(rtx_payload + kRtxHeaderSize, payload.data(), payload.size()); // Add original application data. rtx_packet->set_application_data(packet.application_data()); // Copy capture time so e.g. TransmissionOffset is correctly set. rtx_packet->set_capture_time_ms(packet.capture_time_ms()); return rtx_packet; } void RTPSender::SetRtpState(const RtpState& rtp_state) { MutexLock lock(&send_mutex_); sequence_number_ = rtp_state.sequence_number; sequence_number_forced_ = true; timestamp_offset_ = rtp_state.start_timestamp; last_rtp_timestamp_ = rtp_state.timestamp; capture_time_ms_ = rtp_state.capture_time_ms; last_timestamp_time_ms_ = rtp_state.last_timestamp_time_ms; ssrc_has_acked_ = rtp_state.ssrc_has_acked; UpdateHeaderSizes(); } RtpState RTPSender::GetRtpState() const { MutexLock lock(&send_mutex_); RtpState state; state.sequence_number = sequence_number_; state.start_timestamp = timestamp_offset_; state.timestamp = last_rtp_timestamp_; state.capture_time_ms = capture_time_ms_; state.last_timestamp_time_ms = last_timestamp_time_ms_; state.ssrc_has_acked = ssrc_has_acked_; return state; } void RTPSender::SetRtxRtpState(const RtpState& rtp_state) { MutexLock lock(&send_mutex_); sequence_number_rtx_ = rtp_state.sequence_number; rtx_ssrc_has_acked_ = rtp_state.ssrc_has_acked; } RtpState RTPSender::GetRtxRtpState() const { MutexLock lock(&send_mutex_); RtpState state; state.sequence_number = sequence_number_rtx_; state.start_timestamp = timestamp_offset_; state.ssrc_has_acked = rtx_ssrc_has_acked_; return state; } int64_t RTPSender::LastTimestampTimeMs() const { MutexLock lock(&send_mutex_); return last_timestamp_time_ms_; } void RTPSender::UpdateHeaderSizes() { const size_t rtp_header_length = kRtpHeaderLength + sizeof(uint32_t) * csrcs_.size(); max_padding_fec_packet_header_ = rtp_header_length + RtpHeaderExtensionSize(kFecOrPaddingExtensionSizes, rtp_header_extension_map_); // RtpStreamId and Mid are treated specially in that we check if they // currently are being sent. RepairedRtpStreamId is still ignored since we // assume RTX will not make up large enough bitrate to treat overhead // differently. const bool send_mid_rid = always_send_mid_and_rid_ || !ssrc_has_acked_; std::vector non_volatile_extensions; for (auto& extension : audio_configured_ ? AudioExtensionSizes() : VideoExtensionSizes()) { if (IsNonVolatile(extension.type)) { switch (extension.type) { case RTPExtensionType::kRtpExtensionMid: if (send_mid_rid && !mid_.empty()) { non_volatile_extensions.push_back(extension); } break; case RTPExtensionType::kRtpExtensionRtpStreamId: if (send_mid_rid && !rid_.empty()) { non_volatile_extensions.push_back(extension); } break; default: non_volatile_extensions.push_back(extension); } } } max_media_packet_header_ = rtp_header_length + RtpHeaderExtensionSize(non_volatile_extensions, rtp_header_extension_map_); } } // namespace webrtc