/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/time_util.h" #include #include "rtc_base/checks.h" #include "rtc_base/numerics/divide_round.h" #include "rtc_base/time_utils.h" namespace webrtc { namespace { int64_t NtpOffsetMsCalledOnce() { constexpr int64_t kNtpJan1970Sec = 2208988800; int64_t clock_time = rtc::TimeMillis(); int64_t utc_time = rtc::TimeUTCMillis(); return utc_time - clock_time + kNtpJan1970Sec * rtc::kNumMillisecsPerSec; } } // namespace int64_t NtpOffsetMs() { // Calculate the offset once. static int64_t ntp_offset_ms = NtpOffsetMsCalledOnce(); return ntp_offset_ms; } NtpTime TimeMicrosToNtp(int64_t time_us) { // Since this doesn't return a wallclock time, but only NTP representation // of rtc::TimeMillis() clock, the exact offset doesn't matter. // To simplify conversions between NTP and RTP time, this offset is // limited to milliseconds in resolution. int64_t time_ntp_us = time_us + NtpOffsetMs() * 1000; RTC_DCHECK_GE(time_ntp_us, 0); // Time before year 1900 is unsupported. // TODO(danilchap): Convert both seconds and fraction together using int128 // when that type is easily available. // Currently conversion is done separetly for seconds and fraction of a second // to avoid overflow. // Convert seconds to uint32 through uint64 for well-defined cast. // Wrap around (will happen in 2036) is expected for ntp time. uint32_t ntp_seconds = static_cast(time_ntp_us / rtc::kNumMicrosecsPerSec); // Scale fractions of the second to ntp resolution. constexpr int64_t kNtpInSecond = 1LL << 32; int64_t us_fractions = time_ntp_us % rtc::kNumMicrosecsPerSec; uint32_t ntp_fractions = us_fractions * kNtpInSecond / rtc::kNumMicrosecsPerSec; return NtpTime(ntp_seconds, ntp_fractions); } uint32_t SaturatedUsToCompactNtp(int64_t us) { constexpr uint32_t kMaxCompactNtp = 0xFFFFFFFF; constexpr int kCompactNtpInSecond = 0x10000; if (us <= 0) return 0; if (us >= kMaxCompactNtp * rtc::kNumMicrosecsPerSec / kCompactNtpInSecond) return kMaxCompactNtp; // To convert to compact ntp need to divide by 1e6 to get seconds, // then multiply by 0x10000 to get the final result. // To avoid float operations, multiplication and division swapped. return DivideRoundToNearest(us * kCompactNtpInSecond, rtc::kNumMicrosecsPerSec); } int64_t CompactNtpRttToMs(uint32_t compact_ntp_interval) { // Interval to convert expected to be positive, e.g. rtt or delay. // Because interval can be derived from non-monotonic ntp clock, // it might become negative that is indistinguishable from very large values. // Since very large rtt/delay are less likely than non-monotonic ntp clock, // those values consider to be negative and convert to minimum value of 1ms. if (compact_ntp_interval > 0x80000000) return 1; // Convert to 64bit value to avoid multiplication overflow. int64_t value = static_cast(compact_ntp_interval); // To convert to milliseconds need to divide by 2^16 to get seconds, // then multiply by 1000 to get milliseconds. To avoid float operations, // multiplication and division swapped. int64_t ms = DivideRoundToNearest(value * 1000, 1 << 16); // Rtt value 0 considered too good to be true and increases to 1. return std::max(ms, 1); } } // namespace webrtc