// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/synchronization/mutex.h" #ifdef _WIN32 #include #ifdef ERROR #undef ERROR #endif #else #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include // NOLINT(build/c++11) #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/internal/atomic_hook.h" #include "absl/base/internal/cycleclock.h" #include "absl/base/internal/hide_ptr.h" #include "absl/base/internal/low_level_alloc.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/spinlock.h" #include "absl/base/internal/sysinfo.h" #include "absl/base/internal/thread_identity.h" #include "absl/base/port.h" #include "absl/debugging/stacktrace.h" #include "absl/debugging/symbolize.h" #include "absl/synchronization/internal/graphcycles.h" #include "absl/synchronization/internal/per_thread_sem.h" #include "absl/time/time.h" using absl::base_internal::CurrentThreadIdentityIfPresent; using absl::base_internal::PerThreadSynch; using absl::base_internal::ThreadIdentity; using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity; using absl::synchronization_internal::GraphCycles; using absl::synchronization_internal::GraphId; using absl::synchronization_internal::InvalidGraphId; using absl::synchronization_internal::KernelTimeout; using absl::synchronization_internal::PerThreadSem; extern "C" { ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); } } // extern "C" namespace absl { ABSL_NAMESPACE_BEGIN namespace { #if defined(THREAD_SANITIZER) constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore; #else constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort; #endif ABSL_CONST_INIT std::atomic synch_deadlock_detection( kDeadlockDetectionDefault); ABSL_CONST_INIT std::atomic synch_check_invariants(false); // ------------------------------------------ spinlock support // Make sure read-only globals used in the Mutex code are contained on the // same cacheline and cacheline aligned to eliminate any false sharing with // other globals from this and other modules. static struct MutexGlobals { MutexGlobals() { // Find machine-specific data needed for Delay() and // TryAcquireWithSpinning(). This runs in the global constructor // sequence, and before that zeros are safe values. num_cpus = absl::base_internal::NumCPUs(); spinloop_iterations = num_cpus > 1 ? 1500 : 0; } int num_cpus; int spinloop_iterations; // Pad this struct to a full cacheline to prevent false sharing. char padding[ABSL_CACHELINE_SIZE - 2 * sizeof(int)]; } ABSL_CACHELINE_ALIGNED mutex_globals; static_assert( sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE, "MutexGlobals must occupy an entire cacheline to prevent false sharing"); ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook submit_profile_data; ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook mutex_tracer; ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook cond_var_tracer; ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook< bool (*)(const void *pc, char *out, int out_size)> symbolizer(absl::Symbolize); } // namespace static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu, bool locking, bool trylock, bool read_lock); void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) { submit_profile_data.Store(fn); } void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj, int64_t wait_cycles)) { mutex_tracer.Store(fn); } void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) { cond_var_tracer.Store(fn); } void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) { symbolizer.Store(fn); } // spinlock delay on iteration c. Returns new c. namespace { enum DelayMode { AGGRESSIVE, GENTLE }; }; static int Delay(int32_t c, DelayMode mode) { // If this a uniprocessor, only yield/sleep. Otherwise, if the mode is // aggressive then spin many times before yielding. If the mode is // gentle then spin only a few times before yielding. Aggressive spinning is // used to ensure that an Unlock() call, which must get the spin lock for // any thread to make progress gets it without undue delay. int32_t limit = (mutex_globals.num_cpus > 1) ? ((mode == AGGRESSIVE) ? 5000 : 250) : 0; if (c < limit) { c++; // spin } else { ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0); if (c == limit) { // yield once AbslInternalMutexYield(); c++; } else { // then wait absl::SleepFor(absl::Microseconds(10)); c = 0; } ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0); } return (c); } // --------------------------Generic atomic ops // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to // "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0 // before making any change. // This is used to set flags in mutex and condition variable words. static void AtomicSetBits(std::atomic* pv, intptr_t bits, intptr_t wait_until_clear) { intptr_t v; do { v = pv->load(std::memory_order_relaxed); } while ((v & bits) != bits && ((v & wait_until_clear) != 0 || !pv->compare_exchange_weak(v, v | bits, std::memory_order_release, std::memory_order_relaxed))); } // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to // "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0 // before making any change. // This is used to unset flags in mutex and condition variable words. static void AtomicClearBits(std::atomic* pv, intptr_t bits, intptr_t wait_until_clear) { intptr_t v; do { v = pv->load(std::memory_order_relaxed); } while ((v & bits) != 0 && ((v & wait_until_clear) != 0 || !pv->compare_exchange_weak(v, v & ~bits, std::memory_order_release, std::memory_order_relaxed))); } //------------------------------------------------------------------ // Data for doing deadlock detection. static absl::base_internal::SpinLock deadlock_graph_mu( absl::base_internal::kLinkerInitialized); // graph used to detect deadlocks. static GraphCycles *deadlock_graph ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu); //------------------------------------------------------------------ // An event mechanism for debugging mutex use. // It also allows mutexes to be given names for those who can't handle // addresses, and instead like to give their data structures names like // "Henry", "Fido", or "Rupert IV, King of Yondavia". namespace { // to prevent name pollution enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent // Mutex events SYNCH_EV_TRYLOCK_SUCCESS, SYNCH_EV_TRYLOCK_FAILED, SYNCH_EV_READERTRYLOCK_SUCCESS, SYNCH_EV_READERTRYLOCK_FAILED, SYNCH_EV_LOCK, SYNCH_EV_LOCK_RETURNING, SYNCH_EV_READERLOCK, SYNCH_EV_READERLOCK_RETURNING, SYNCH_EV_UNLOCK, SYNCH_EV_READERUNLOCK, // CondVar events SYNCH_EV_WAIT, SYNCH_EV_WAIT_RETURNING, SYNCH_EV_SIGNAL, SYNCH_EV_SIGNALALL, }; enum { // Event flags SYNCH_F_R = 0x01, // reader event SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held SYNCH_F_TRY = 0x04, // TryLock or ReaderTryLock SYNCH_F_UNLOCK = 0x08, // Unlock or ReaderUnlock SYNCH_F_LCK_W = SYNCH_F_LCK, SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R, }; } // anonymous namespace // Properties of the events. static const struct { int flags; const char *msg; } event_properties[] = { {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "}, {0, "TryLock failed "}, {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "}, {0, "ReaderTryLock failed "}, {0, "Lock blocking "}, {SYNCH_F_LCK_W, "Lock returning "}, {0, "ReaderLock blocking "}, {SYNCH_F_LCK_R, "ReaderLock returning "}, {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "}, {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "}, {0, "Wait on "}, {0, "Wait unblocked "}, {0, "Signal on "}, {0, "SignalAll on "}, }; static absl::base_internal::SpinLock synch_event_mu( absl::base_internal::kLinkerInitialized); // protects synch_event // Hash table size; should be prime > 2. // Can't be too small, as it's used for deadlock detection information. static const uint32_t kNSynchEvent = 1031; static struct SynchEvent { // this is a trivial hash table for the events // struct is freed when refcount reaches 0 int refcount ABSL_GUARDED_BY(synch_event_mu); // buckets have linear, 0-terminated chains SynchEvent *next ABSL_GUARDED_BY(synch_event_mu); // Constant after initialization uintptr_t masked_addr; // object at this address is called "name" // No explicit synchronization used. Instead we assume that the // client who enables/disables invariants/logging on a Mutex does so // while the Mutex is not being concurrently accessed by others. void (*invariant)(void *arg); // called on each event void *arg; // first arg to (*invariant)() bool log; // logging turned on // Constant after initialization char name[1]; // actually longer---NUL-terminated string } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu); // Ensure that the object at "addr" has a SynchEvent struct associated with it, // set "bits" in the word there (waiting until lockbit is clear before doing // so), and return a refcounted reference that will remain valid until // UnrefSynchEvent() is called. If a new SynchEvent is allocated, // the string name is copied into it. // When used with a mutex, the caller should also ensure that kMuEvent // is set in the mutex word, and similarly for condition variables and kCVEvent. static SynchEvent *EnsureSynchEvent(std::atomic *addr, const char *name, intptr_t bits, intptr_t lockbit) { uint32_t h = reinterpret_cast(addr) % kNSynchEvent; SynchEvent *e; // first look for existing SynchEvent struct.. synch_event_mu.Lock(); for (e = synch_event[h]; e != nullptr && e->masked_addr != base_internal::HidePtr(addr); e = e->next) { } if (e == nullptr) { // no SynchEvent struct found; make one. if (name == nullptr) { name = ""; } size_t l = strlen(name); e = reinterpret_cast( base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l)); e->refcount = 2; // one for return value, one for linked list e->masked_addr = base_internal::HidePtr(addr); e->invariant = nullptr; e->arg = nullptr; e->log = false; strcpy(e->name, name); // NOLINT(runtime/printf) e->next = synch_event[h]; AtomicSetBits(addr, bits, lockbit); synch_event[h] = e; } else { e->refcount++; // for return value } synch_event_mu.Unlock(); return e; } // Deallocate the SynchEvent *e, whose refcount has fallen to zero. static void DeleteSynchEvent(SynchEvent *e) { base_internal::LowLevelAlloc::Free(e); } // Decrement the reference count of *e, or do nothing if e==null. static void UnrefSynchEvent(SynchEvent *e) { if (e != nullptr) { synch_event_mu.Lock(); bool del = (--(e->refcount) == 0); synch_event_mu.Unlock(); if (del) { DeleteSynchEvent(e); } } } // Forget the mapping from the object (Mutex or CondVar) at address addr // to SynchEvent object, and clear "bits" in its word (waiting until lockbit // is clear before doing so). static void ForgetSynchEvent(std::atomic *addr, intptr_t bits, intptr_t lockbit) { uint32_t h = reinterpret_cast(addr) % kNSynchEvent; SynchEvent **pe; SynchEvent *e; synch_event_mu.Lock(); for (pe = &synch_event[h]; (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr); pe = &e->next) { } bool del = false; if (e != nullptr) { *pe = e->next; del = (--(e->refcount) == 0); } AtomicClearBits(addr, bits, lockbit); synch_event_mu.Unlock(); if (del) { DeleteSynchEvent(e); } } // Return a refcounted reference to the SynchEvent of the object at address // "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is // called. static SynchEvent *GetSynchEvent(const void *addr) { uint32_t h = reinterpret_cast(addr) % kNSynchEvent; SynchEvent *e; synch_event_mu.Lock(); for (e = synch_event[h]; e != nullptr && e->masked_addr != base_internal::HidePtr(addr); e = e->next) { } if (e != nullptr) { e->refcount++; } synch_event_mu.Unlock(); return e; } // Called when an event "ev" occurs on a Mutex of CondVar "obj" // if event recording is on static void PostSynchEvent(void *obj, int ev) { SynchEvent *e = GetSynchEvent(obj); // logging is on if event recording is on and either there's no event struct, // or it explicitly says to log if (e == nullptr || e->log) { void *pcs[40]; int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1); // A buffer with enough space for the ASCII for all the PCs, even on a // 64-bit machine. char buffer[ABSL_ARRAYSIZE(pcs) * 24]; int pos = snprintf(buffer, sizeof (buffer), " @"); for (int i = 0; i != n; i++) { pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]); } ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj, (e == nullptr ? "" : e->name), buffer); } const int flags = event_properties[ev].flags; if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) { // Calling the invariant as is causes problems under ThreadSanitizer. // We are currently inside of Mutex Lock/Unlock and are ignoring all // memory accesses and synchronization. If the invariant transitively // synchronizes something else and we ignore the synchronization, we will // get false positive race reports later. // Reuse EvalConditionAnnotated to properly call into user code. struct local { static bool pred(SynchEvent *ev) { (*ev->invariant)(ev->arg); return false; } }; Condition cond(&local::pred, e); Mutex *mu = static_cast(obj); const bool locking = (flags & SYNCH_F_UNLOCK) == 0; const bool trylock = (flags & SYNCH_F_TRY) != 0; const bool read_lock = (flags & SYNCH_F_R) != 0; EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock); } UnrefSynchEvent(e); } //------------------------------------------------------------------ // The SynchWaitParams struct encapsulates the way in which a thread is waiting: // whether it has a timeout, the condition, exclusive/shared, and whether a // condition variable wait has an associated Mutex (as opposed to another // type of lock). It also points to the PerThreadSynch struct of its thread. // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue(). // // This structure is held on the stack rather than directly in // PerThreadSynch because a thread can be waiting on multiple Mutexes if, // while waiting on one Mutex, the implementation calls a client callback // (such as a Condition function) that acquires another Mutex. We don't // strictly need to allow this, but programmers become confused if we do not // allow them to use functions such a LOG() within Condition functions. The // PerThreadSynch struct points at the most recent SynchWaitParams struct when // the thread is on a Mutex's waiter queue. struct SynchWaitParams { SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg, KernelTimeout timeout_arg, Mutex *cvmu_arg, PerThreadSynch *thread_arg, std::atomic *cv_word_arg) : how(how_arg), cond(cond_arg), timeout(timeout_arg), cvmu(cvmu_arg), thread(thread_arg), cv_word(cv_word_arg), contention_start_cycles(base_internal::CycleClock::Now()) {} const Mutex::MuHow how; // How this thread needs to wait. const Condition *cond; // The condition that this thread is waiting for. // In Mutex, this field is set to zero if a timeout // expires. KernelTimeout timeout; // timeout expiry---absolute time // In Mutex, this field is set to zero if a timeout // expires. Mutex *const cvmu; // used for transfer from cond var to mutex PerThreadSynch *const thread; // thread that is waiting // If not null, thread should be enqueued on the CondVar whose state // word is cv_word instead of queueing normally on the Mutex. std::atomic *cv_word; int64_t contention_start_cycles; // Time (in cycles) when this thread started // to contend for the mutex. }; struct SynchLocksHeld { int n; // number of valid entries in locks[] bool overflow; // true iff we overflowed the array at some point struct { Mutex *mu; // lock acquired int32_t count; // times acquired GraphId id; // deadlock_graph id of acquired lock } locks[40]; // If a thread overfills the array during deadlock detection, we // continue, discarding information as needed. If no overflow has // taken place, we can provide more error checking, such as // detecting when a thread releases a lock it does not hold. }; // A sentinel value in lists that is not 0. // A 0 value is used to mean "not on a list". static PerThreadSynch *const kPerThreadSynchNull = reinterpret_cast(1); static SynchLocksHeld *LocksHeldAlloc() { SynchLocksHeld *ret = reinterpret_cast( base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld))); ret->n = 0; ret->overflow = false; return ret; } // Return the PerThreadSynch-struct for this thread. static PerThreadSynch *Synch_GetPerThread() { ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity(); return &identity->per_thread_synch; } static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) { if (mu) { ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); } PerThreadSynch *w = Synch_GetPerThread(); if (mu) { ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); } return w; } static SynchLocksHeld *Synch_GetAllLocks() { PerThreadSynch *s = Synch_GetPerThread(); if (s->all_locks == nullptr) { s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity. } return s->all_locks; } // Post on "w"'s associated PerThreadSem. inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) { if (mu) { ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); } PerThreadSem::Post(w->thread_identity()); if (mu) { ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); } } // Wait on "w"'s associated PerThreadSem; returns false if timeout expired. bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) { if (mu) { ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); } assert(w == Synch_GetPerThread()); static_cast(w); bool res = PerThreadSem::Wait(t); if (mu) { ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); } return res; } // We're in a fatal signal handler that hopes to use Mutex and to get // lucky by not deadlocking. We try to improve its chances of success // by effectively disabling some of the consistency checks. This will // prevent certain ABSL_RAW_CHECK() statements from being triggered when // re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the // Mutex code checking that the "waitp" field has not been reused. void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() { // Fix the per-thread state only if it exists. ThreadIdentity *identity = CurrentThreadIdentityIfPresent(); if (identity != nullptr) { identity->per_thread_synch.suppress_fatal_errors = true; } // Don't do deadlock detection when we are already failing. synch_deadlock_detection.store(OnDeadlockCycle::kIgnore, std::memory_order_release); } // --------------------------time support // Return the current time plus the timeout. Use the same clock as // PerThreadSem::Wait() for consistency. Unfortunately, we don't have // such a choice when a deadline is given directly. static absl::Time DeadlineFromTimeout(absl::Duration timeout) { #ifndef _WIN32 struct timeval tv; gettimeofday(&tv, nullptr); return absl::TimeFromTimeval(tv) + timeout; #else return absl::Now() + timeout; #endif } // --------------------------Mutexes // In the layout below, the msb of the bottom byte is currently unused. Also, // the following constraints were considered in choosing the layout: // o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and // 0xcd) are illegal: reader and writer lock both held. // o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the // bit-twiddling trick in Mutex::Unlock(). // o kMuWriter / kMuReader == kMuWrWait / kMuWait, // to enable the bit-twiddling trick in CheckForMutexCorruption(). static const intptr_t kMuReader = 0x0001L; // a reader holds the lock static const intptr_t kMuDesig = 0x0002L; // there's a designated waker static const intptr_t kMuWait = 0x0004L; // threads are waiting static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock static const intptr_t kMuEvent = 0x0010L; // record this mutex's events // INVARIANT1: there's a thread that was blocked on the mutex, is // no longer, yet has not yet acquired the mutex. If there's a // designated waker, all threads can avoid taking the slow path in // unlock because the designated waker will subsequently acquire // the lock and wake someone. To maintain INVARIANT1 the bit is // set when a thread is unblocked(INV1a), and threads that were // unblocked reset the bit when they either acquire or re-block // (INV1b). static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting // for a reader static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count // Hack to make constant values available to gdb pretty printer enum { kGdbMuSpin = kMuSpin, kGdbMuEvent = kMuEvent, kGdbMuWait = kMuWait, kGdbMuWriter = kMuWriter, kGdbMuDesig = kMuDesig, kGdbMuWrWait = kMuWrWait, kGdbMuReader = kMuReader, kGdbMuLow = kMuLow, }; // kMuWrWait implies kMuWait. // kMuReader and kMuWriter are mutually exclusive. // If kMuReader is zero, there are no readers. // Otherwise, if kMuWait is zero, the high order bits contain a count of the // number of readers. Otherwise, the reader count is held in // PerThreadSynch::readers of the most recently queued waiter, again in the // bits above kMuLow. static const intptr_t kMuOne = 0x0100; // a count of one reader // flags passed to Enqueue and LockSlow{,WithTimeout,Loop} static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1) static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition) static_assert(PerThreadSynch::kAlignment > kMuLow, "PerThreadSynch::kAlignment must be greater than kMuLow"); // This struct contains various bitmasks to be used in // acquiring and releasing a mutex in a particular mode. struct MuHowS { // if all the bits in fast_need_zero are zero, the lock can be acquired by // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff // this is the designated waker. intptr_t fast_need_zero; intptr_t fast_or; intptr_t fast_add; intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging) intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are // zero a reader can acquire a read share by // setting the reader bit and incrementing // the reader count (in last waiter since // we're now slow-path). kMuWrWait be may // be ignored if we already waited once. }; static const MuHowS kSharedS = { // shared or read lock kMuWriter | kMuWait | kMuEvent, // fast_need_zero kMuReader, // fast_or kMuOne, // fast_add kMuWriter | kMuWait, // slow_need_zero kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero }; static const MuHowS kExclusiveS = { // exclusive or write lock kMuWriter | kMuReader | kMuEvent, // fast_need_zero kMuWriter, // fast_or 0, // fast_add kMuWriter | kMuReader, // slow_need_zero ~static_cast(0), // slow_inc_need_zero }; static const Mutex::MuHow kShared = &kSharedS; // shared lock static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock #ifdef NDEBUG static constexpr bool kDebugMode = false; #else static constexpr bool kDebugMode = true; #endif #ifdef THREAD_SANITIZER static unsigned TsanFlags(Mutex::MuHow how) { return how == kShared ? __tsan_mutex_read_lock : 0; } #endif static bool DebugOnlyIsExiting() { return false; } Mutex::~Mutex() { intptr_t v = mu_.load(std::memory_order_relaxed); if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) { ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin); } if (kDebugMode) { this->ForgetDeadlockInfo(); } ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static); } void Mutex::EnableDebugLog(const char *name) { SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin); e->log = true; UnrefSynchEvent(e); } void EnableMutexInvariantDebugging(bool enabled) { synch_check_invariants.store(enabled, std::memory_order_release); } void Mutex::EnableInvariantDebugging(void (*invariant)(void *), void *arg) { if (synch_check_invariants.load(std::memory_order_acquire) && invariant != nullptr) { SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin); e->invariant = invariant; e->arg = arg; UnrefSynchEvent(e); } } void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) { synch_deadlock_detection.store(mode, std::memory_order_release); } // Return true iff threads x and y are waiting on the same condition for the // same type of lock. Requires that x and y be waiting on the same Mutex // queue. static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) { return x->waitp->how == y->waitp->how && Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond); } // Given the contents of a mutex word containing a PerThreadSynch pointer, // return the pointer. static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) { return reinterpret_cast(v & kMuHigh); } // The next several routines maintain the per-thread next and skip fields // used in the Mutex waiter queue. // The queue is a circular singly-linked list, of which the "head" is the // last element, and head->next if the first element. // The skip field has the invariant: // For thread x, x->skip is one of: // - invalid (iff x is not in a Mutex wait queue), // - null, or // - a pointer to a distinct thread waiting later in the same Mutex queue // such that all threads in [x, x->skip] have the same condition and // lock type (MuSameCondition() is true for all pairs in [x, x->skip]). // In addition, if x->skip is valid, (x->may_skip || x->skip == null) // // By the spec of MuSameCondition(), it is not necessary when removing the // first runnable thread y from the front a Mutex queue to adjust the skip // field of another thread x because if x->skip==y, x->skip must (have) become // invalid before y is removed. The function TryRemove can remove a specified // thread from an arbitrary position in the queue whether runnable or not, so // it fixes up skip fields that would otherwise be left dangling. // The statement // if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; } // maintains the invariant provided x is not the last waiter in a Mutex queue // The statement // if (x->skip != null) { x->skip = x->skip->skip; } // maintains the invariant. // Returns the last thread y in a mutex waiter queue such that all threads in // [x, y] inclusive share the same condition. Sets skip fields of some threads // in that range to optimize future evaluation of Skip() on x values in // the range. Requires thread x is in a mutex waiter queue. // The locking is unusual. Skip() is called under these conditions: // - spinlock is held in call from Enqueue(), with maybe_unlocking == false // - Mutex is held in call from UnlockSlow() by last unlocker, with // maybe_unlocking == true // - both Mutex and spinlock are held in call from DequeueAllWakeable() (from // UnlockSlow()) and TryRemove() // These cases are mutually exclusive, so Skip() never runs concurrently // with itself on the same Mutex. The skip chain is used in these other places // that cannot occur concurrently: // - FixSkip() (from TryRemove()) - spinlock and Mutex are held) // - Dequeue() (with spinlock and Mutex held) // - UnlockSlow() (with spinlock and Mutex held) // A more complex case is Enqueue() // - Enqueue() (with spinlock held and maybe_unlocking == false) // This is the first case in which Skip is called, above. // - Enqueue() (without spinlock held; but queue is empty and being freshly // formed) // - Enqueue() (with spinlock held and maybe_unlocking == true) // The first case has mutual exclusion, and the second isolation through // working on an otherwise unreachable data structure. // In the last case, Enqueue() is required to change no skip/next pointers // except those in the added node and the former "head" node. This implies // that the new node is added after head, and so must be the new head or the // new front of the queue. static PerThreadSynch *Skip(PerThreadSynch *x) { PerThreadSynch *x0 = nullptr; PerThreadSynch *x1 = x; PerThreadSynch *x2 = x->skip; if (x2 != nullptr) { // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence // such that x1 == x0->skip && x2 == x1->skip while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) { x0->skip = x2; // short-circuit skip from x0 to x2 } x->skip = x1; // short-circuit skip from x to result } return x1; } // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue. // The latter is going to be removed out of order, because of a timeout. // Check whether "ancestor" has a skip field pointing to "to_be_removed", // and fix it if it does. static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) { if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling if (to_be_removed->skip != nullptr) { ancestor->skip = to_be_removed->skip; // can skip past to_be_removed } else if (ancestor->next != to_be_removed) { // they are not adjacent ancestor->skip = ancestor->next; // can skip one past ancestor } else { ancestor->skip = nullptr; // can't skip at all } } } static void CondVarEnqueue(SynchWaitParams *waitp); // Enqueue thread "waitp->thread" on a waiter queue. // Called with mutex spinlock held if head != nullptr // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is // idempotent; it alters no state associated with the existing (empty) // queue. // // If waitp->cv_word == nullptr, queue the thread at either the front or // the end (according to its priority) of the circular mutex waiter queue whose // head is "head", and return the new head. mu is the previous mutex state, // which contains the reader count (perhaps adjusted for the operation in // progress) if the list was empty and a read lock held, and the holder hint if // the list was empty and a write lock held. (flags & kMuIsCond) indicates // whether this thread was transferred from a CondVar or is waiting for a // non-trivial condition. In this case, Enqueue() never returns nullptr // // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is // returned. This mechanism is used by CondVar to queue a thread on the // condition variable queue instead of the mutex queue in implementing Wait(). // In this case, Enqueue() can return nullptr (if head==nullptr). static PerThreadSynch *Enqueue(PerThreadSynch *head, SynchWaitParams *waitp, intptr_t mu, int flags) { // If we have been given a cv_word, call CondVarEnqueue() and return // the previous head of the Mutex waiter queue. if (waitp->cv_word != nullptr) { CondVarEnqueue(waitp); return head; } PerThreadSynch *s = waitp->thread; ABSL_RAW_CHECK( s->waitp == nullptr || // normal case s->waitp == waitp || // Fer()---transfer from condition variable s->suppress_fatal_errors, "detected illegal recursion into Mutex code"); s->waitp = waitp; s->skip = nullptr; // maintain skip invariant (see above) s->may_skip = true; // always true on entering queue s->wake = false; // not being woken s->cond_waiter = ((flags & kMuIsCond) != 0); if (head == nullptr) { // s is the only waiter s->next = s; // it's the only entry in the cycle s->readers = mu; // reader count is from mu word s->maybe_unlocking = false; // no one is searching an empty list head = s; // s is new head } else { PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM int64_t now_cycles = base_internal::CycleClock::Now(); if (s->next_priority_read_cycles < now_cycles) { // Every so often, update our idea of the thread's priority. // pthread_getschedparam() is 5% of the block/wakeup time; // base_internal::CycleClock::Now() is 0.5%. int policy; struct sched_param param; const int err = pthread_getschedparam(pthread_self(), &policy, ¶m); if (err != 0) { ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err); } else { s->priority = param.sched_priority; s->next_priority_read_cycles = now_cycles + static_cast(base_internal::CycleClock::Frequency()); } } if (s->priority > head->priority) { // s's priority is above head's // try to put s in priority-fifo order, or failing that at the front. if (!head->maybe_unlocking) { // No unlocker can be scanning the queue, so we can insert between // skip-chains, and within a skip-chain if it has the same condition as // s. We insert in priority-fifo order, examining the end of every // skip-chain, plus every element with the same condition as s. PerThreadSynch *advance_to = head; // next value of enqueue_after PerThreadSynch *cur; // successor of enqueue_after do { enqueue_after = advance_to; cur = enqueue_after->next; // this advance ensures progress advance_to = Skip(cur); // normally, advance to end of skip chain // (side-effect: optimizes skip chain) if (advance_to != cur && s->priority > advance_to->priority && MuSameCondition(s, cur)) { // but this skip chain is not a singleton, s has higher priority // than its tail and has the same condition as the chain, // so we can insert within the skip-chain advance_to = cur; // advance by just one } } while (s->priority <= advance_to->priority); // termination guaranteed because s->priority > head->priority // and head is the end of a skip chain } else if (waitp->how == kExclusive && Condition::GuaranteedEqual(waitp->cond, nullptr)) { // An unlocker could be scanning the queue, but we know it will recheck // the queue front for writers that have no condition, which is what s // is, so an insert at front is safe. enqueue_after = head; // add after head, at front } } #endif if (enqueue_after != nullptr) { s->next = enqueue_after->next; enqueue_after->next = s; // enqueue_after can be: head, Skip(...), or cur. // The first two imply enqueue_after->skip == nullptr, and // the last is used only if MuSameCondition(s, cur). // We require this because clearing enqueue_after->skip // is impossible; enqueue_after's predecessors might also // incorrectly skip over s if we were to allow other // insertion points. ABSL_RAW_CHECK( enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s), "Mutex Enqueue failure"); if (enqueue_after != head && enqueue_after->may_skip && MuSameCondition(enqueue_after, enqueue_after->next)) { // enqueue_after can skip to its new successor, s enqueue_after->skip = enqueue_after->next; } if (MuSameCondition(s, s->next)) { // s->may_skip is known to be true s->skip = s->next; // s may skip to its successor } } else { // enqueue not done any other way, so // we're inserting s at the back // s will become new head; copy data from head into it s->next = head->next; // add s after head head->next = s; s->readers = head->readers; // reader count is from previous head s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint if (head->may_skip && MuSameCondition(head, s)) { // head now has successor; may skip head->skip = s; } head = s; // s is new head } } s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed); return head; } // Dequeue the successor pw->next of thread pw from the Mutex waiter queue // whose last element is head. The new head element is returned, or null // if the list is made empty. // Dequeue is called with both spinlock and Mutex held. static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) { PerThreadSynch *w = pw->next; pw->next = w->next; // snip w out of list if (head == w) { // we removed the head head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head } else if (pw != head && MuSameCondition(pw, pw->next)) { // pw can skip to its new successor if (pw->next->skip != nullptr) { // either skip to its successors skip target pw->skip = pw->next->skip; } else { // or to pw's successor pw->skip = pw->next; } } return head; } // Traverse the elements [ pw->next, h] of the circular list whose last element // is head. // Remove all elements with wake==true and place them in the // singly-linked list wake_list in the order found. Assumes that // there is only one such element if the element has how == kExclusive. // Return the new head. static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head, PerThreadSynch *pw, PerThreadSynch **wake_tail) { PerThreadSynch *orig_h = head; PerThreadSynch *w = pw->next; bool skipped = false; do { if (w->wake) { // remove this element ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable"); // we're removing pw's successor so either pw->skip is zero or we should // already have removed pw since if pw->skip!=null, pw has the same // condition as w. head = Dequeue(head, pw); w->next = *wake_tail; // keep list terminated *wake_tail = w; // add w to wake_list; wake_tail = &w->next; // next addition to end if (w->waitp->how == kExclusive) { // wake at most 1 writer break; } } else { // not waking this one; skip pw = Skip(w); // skip as much as possible skipped = true; } w = pw->next; // We want to stop processing after we've considered the original head, // orig_h. We can't test for w==orig_h in the loop because w may skip over // it; we are guaranteed only that w's predecessor will not skip over // orig_h. When we've considered orig_h, either we've processed it and // removed it (so orig_h != head), or we considered it and skipped it (so // skipped==true && pw == head because skipping from head always skips by // just one, leaving pw pointing at head). So we want to // continue the loop with the negation of that expression. } while (orig_h == head && (pw != head || !skipped)); return head; } // Try to remove thread s from the list of waiters on this mutex. // Does nothing if s is not on the waiter list. void Mutex::TryRemove(PerThreadSynch *s) { intptr_t v = mu_.load(std::memory_order_relaxed); // acquire spinlock & lock if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait && mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch *h = GetPerThreadSynch(v); if (h != nullptr) { PerThreadSynch *pw = h; // pw is w's predecessor PerThreadSynch *w; if ((w = pw->next) != s) { // search for thread, do { // processing at least one element if (!MuSameCondition(s, w)) { // seeking different condition pw = Skip(w); // so skip all that won't match // we don't have to worry about dangling skip fields // in the threads we skipped; none can point to s // because their condition differs from s } else { // seeking same condition FixSkip(w, s); // fix up any skip pointer from w to s pw = w; } // don't search further if we found the thread, or we're about to // process the first thread again. } while ((w = pw->next) != s && pw != h); } if (w == s) { // found thread; remove it // pw->skip may be non-zero here; the loop above ensured that // no ancestor of s can skip to s, so removal is safe anyway. h = Dequeue(h, pw); s->next = nullptr; s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); } } intptr_t nv; do { // release spinlock and lock v = mu_.load(std::memory_order_relaxed); nv = v & (kMuDesig | kMuEvent); if (h != nullptr) { nv |= kMuWait | reinterpret_cast(h); h->readers = 0; // we hold writer lock h->maybe_unlocking = false; // finished unlocking } } while (!mu_.compare_exchange_weak(v, nv, std::memory_order_release, std::memory_order_relaxed)); } } // Wait until thread "s", which must be the current thread, is removed from the // this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up // if the wait extends past the absolute time specified, even if "s" is still // on the mutex queue. In this case, remove "s" from the queue and return // true, otherwise return false. ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) { while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) { if (!DecrementSynchSem(this, s, s->waitp->timeout)) { // After a timeout, we go into a spin loop until we remove ourselves // from the queue, or someone else removes us. We can't be sure to be // able to remove ourselves in a single lock acquisition because this // mutex may be held, and the holder has the right to read the centre // of the waiter queue without holding the spinlock. this->TryRemove(s); int c = 0; while (s->next != nullptr) { c = Delay(c, GENTLE); this->TryRemove(s); } if (kDebugMode) { // This ensures that we test the case that TryRemove() is called when s // is not on the queue. this->TryRemove(s); } s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied s->waitp->cond = nullptr; // condition no longer relevant for wakeups } } ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors, "detected illegal recursion in Mutex code"); s->waitp = nullptr; } // Wake thread w, and return the next thread in the list. PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) { PerThreadSynch *next = w->next; w->next = nullptr; w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); IncrementSynchSem(this, w); return next; } static GraphId GetGraphIdLocked(Mutex *mu) ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) { if (!deadlock_graph) { // (re)create the deadlock graph. deadlock_graph = new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph))) GraphCycles; } return deadlock_graph->GetId(mu); } static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) { deadlock_graph_mu.Lock(); GraphId id = GetGraphIdLocked(mu); deadlock_graph_mu.Unlock(); return id; } // Record a lock acquisition. This is used in debug mode for deadlock // detection. The held_locks pointer points to the relevant data // structure for each case. static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) { int n = held_locks->n; int i = 0; while (i != n && held_locks->locks[i].id != id) { i++; } if (i == n) { if (n == ABSL_ARRAYSIZE(held_locks->locks)) { held_locks->overflow = true; // lost some data } else { // we have room for lock held_locks->locks[i].mu = mu; held_locks->locks[i].count = 1; held_locks->locks[i].id = id; held_locks->n = n + 1; } } else { held_locks->locks[i].count++; } } // Record a lock release. Each call to LockEnter(mu, id, x) should be // eventually followed by a call to LockLeave(mu, id, x) by the same thread. // It does not process the event if is not needed when deadlock detection is // disabled. static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) { int n = held_locks->n; int i = 0; while (i != n && held_locks->locks[i].id != id) { i++; } if (i == n) { if (!held_locks->overflow) { // The deadlock id may have been reassigned after ForgetDeadlockInfo, // but in that case mu should still be present. i = 0; while (i != n && held_locks->locks[i].mu != mu) { i++; } if (i == n) { // mu missing means releasing unheld lock SynchEvent *mu_events = GetSynchEvent(mu); ABSL_RAW_LOG(FATAL, "thread releasing lock it does not hold: %p %s; " , static_cast(mu), mu_events == nullptr ? "" : mu_events->name); } } } else if (held_locks->locks[i].count == 1) { held_locks->n = n - 1; held_locks->locks[i] = held_locks->locks[n - 1]; held_locks->locks[n - 1].id = InvalidGraphId(); held_locks->locks[n - 1].mu = nullptr; // clear mu to please the leak detector. } else { assert(held_locks->locks[i].count > 0); held_locks->locks[i].count--; } } // Call LockEnter() if in debug mode and deadlock detection is enabled. static inline void DebugOnlyLockEnter(Mutex *mu) { if (kDebugMode) { if (synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks()); } } } // Call LockEnter() if in debug mode and deadlock detection is enabled. static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) { if (kDebugMode) { if (synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { LockEnter(mu, id, Synch_GetAllLocks()); } } } // Call LockLeave() if in debug mode and deadlock detection is enabled. static inline void DebugOnlyLockLeave(Mutex *mu) { if (kDebugMode) { if (synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks()); } } } static char *StackString(void **pcs, int n, char *buf, int maxlen, bool symbolize) { static const int kSymLen = 200; char sym[kSymLen]; int len = 0; for (int i = 0; i != n; i++) { if (symbolize) { if (!symbolizer(pcs[i], sym, kSymLen)) { sym[0] = '\0'; } snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n", (i == 0 ? "\n" : ""), pcs[i], sym); } else { snprintf(buf + len, maxlen - len, " %p", pcs[i]); } len += strlen(&buf[len]); } return buf; } static char *CurrentStackString(char *buf, int maxlen, bool symbolize) { void *pcs[40]; return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf, maxlen, symbolize); } namespace { enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle; // a path this long would be remarkable // Buffers required to report a deadlock. // We do not allocate them on stack to avoid large stack frame. struct DeadlockReportBuffers { char buf[6100]; GraphId path[kMaxDeadlockPathLen]; }; struct ScopedDeadlockReportBuffers { ScopedDeadlockReportBuffers() { b = reinterpret_cast( base_internal::LowLevelAlloc::Alloc(sizeof(*b))); } ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); } DeadlockReportBuffers *b; }; // Helper to pass to GraphCycles::UpdateStackTrace. int GetStack(void** stack, int max_depth) { return absl::GetStackTrace(stack, max_depth, 3); } } // anonymous namespace // Called in debug mode when a thread is about to acquire a lock in a way that // may block. static GraphId DeadlockCheck(Mutex *mu) { if (synch_deadlock_detection.load(std::memory_order_acquire) == OnDeadlockCycle::kIgnore) { return InvalidGraphId(); } SynchLocksHeld *all_locks = Synch_GetAllLocks(); absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu); const GraphId mu_id = GetGraphIdLocked(mu); if (all_locks->n == 0) { // There are no other locks held. Return now so that we don't need to // call GetSynchEvent(). This way we do not record the stack trace // for this Mutex. It's ok, since if this Mutex is involved in a deadlock, // it can't always be the first lock acquired by a thread. return mu_id; } // We prefer to keep stack traces that show a thread holding and acquiring // as many locks as possible. This increases the chances that a given edge // in the acquires-before graph will be represented in the stack traces // recorded for the locks. deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack); // For each other mutex already held by this thread: for (int i = 0; i != all_locks->n; i++) { const GraphId other_node_id = all_locks->locks[i].id; const Mutex *other = static_cast(deadlock_graph->Ptr(other_node_id)); if (other == nullptr) { // Ignore stale lock continue; } // Add the acquired-before edge to the graph. if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) { ScopedDeadlockReportBuffers scoped_buffers; DeadlockReportBuffers *b = scoped_buffers.b; static int number_of_reported_deadlocks = 0; number_of_reported_deadlocks++; // Symbolize only 2 first deadlock report to avoid huge slowdowns. bool symbolize = number_of_reported_deadlocks <= 2; ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s", CurrentStackString(b->buf, sizeof (b->buf), symbolize)); int len = 0; for (int j = 0; j != all_locks->n; j++) { void* pr = deadlock_graph->Ptr(all_locks->locks[j].id); if (pr != nullptr) { snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr); len += static_cast(strlen(&b->buf[len])); } } ABSL_RAW_LOG(ERROR, "Acquiring %p Mutexes held: %s", static_cast(mu), b->buf); ABSL_RAW_LOG(ERROR, "Cycle: "); int path_len = deadlock_graph->FindPath( mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path); for (int j = 0; j != path_len; j++) { GraphId id = b->path[j]; Mutex *path_mu = static_cast(deadlock_graph->Ptr(id)); if (path_mu == nullptr) continue; void** stack; int depth = deadlock_graph->GetStackTrace(id, &stack); snprintf(b->buf, sizeof(b->buf), "mutex@%p stack: ", static_cast(path_mu)); StackString(stack, depth, b->buf + strlen(b->buf), static_cast(sizeof(b->buf) - strlen(b->buf)), symbolize); ABSL_RAW_LOG(ERROR, "%s", b->buf); } if (synch_deadlock_detection.load(std::memory_order_acquire) == OnDeadlockCycle::kAbort) { deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler ABSL_RAW_LOG(FATAL, "dying due to potential deadlock"); return mu_id; } break; // report at most one potential deadlock per acquisition } } return mu_id; } // Invoke DeadlockCheck() iff we're in debug mode and // deadlock checking has been enabled. static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) { if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { return DeadlockCheck(mu); } else { return InvalidGraphId(); } } void Mutex::ForgetDeadlockInfo() { if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { deadlock_graph_mu.Lock(); if (deadlock_graph != nullptr) { deadlock_graph->RemoveNode(this); } deadlock_graph_mu.Unlock(); } } void Mutex::AssertNotHeld() const { // We have the data to allow this check only if in debug mode and deadlock // detection is enabled. if (kDebugMode && (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 && synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { GraphId id = GetGraphId(const_cast(this)); SynchLocksHeld *locks = Synch_GetAllLocks(); for (int i = 0; i != locks->n; i++) { if (locks->locks[i].id == id) { SynchEvent *mu_events = GetSynchEvent(this); ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s", static_cast(this), (mu_events == nullptr ? "" : mu_events->name)); } } } } // Attempt to acquire *mu, and return whether successful. The implementation // may spin for a short while if the lock cannot be acquired immediately. static bool TryAcquireWithSpinning(std::atomic* mu) { int c = mutex_globals.spinloop_iterations; int result = -1; // result of operation: 0=false, 1=true, -1=unknown do { // do/while somewhat faster on AMD intptr_t v = mu->load(std::memory_order_relaxed); if ((v & (kMuReader|kMuEvent)) != 0) { // a reader or tracing -> give up result = 0; } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire mu->compare_exchange_strong(v, kMuWriter | v, std::memory_order_acquire, std::memory_order_relaxed)) { result = 1; } } while (result == -1 && --c > 0); return result == 1; } ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() { ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); GraphId id = DebugOnlyDeadlockCheck(this); intptr_t v = mu_.load(std::memory_order_relaxed); // try fast acquire, then spin loop if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 || !mu_.compare_exchange_strong(v, kMuWriter | v, std::memory_order_acquire, std::memory_order_relaxed)) { // try spin acquire, then slow loop if (!TryAcquireWithSpinning(&this->mu_)) { this->LockSlow(kExclusive, nullptr, 0); } } DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); } ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); GraphId id = DebugOnlyDeadlockCheck(this); intptr_t v = mu_.load(std::memory_order_relaxed); // try fast acquire, then slow loop if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 || !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, std::memory_order_acquire, std::memory_order_relaxed)) { this->LockSlow(kShared, nullptr, 0); } DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); } void Mutex::LockWhen(const Condition &cond) { ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); GraphId id = DebugOnlyDeadlockCheck(this); this->LockSlow(kExclusive, &cond, 0); DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); } bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) { return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout)); } bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) { ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); GraphId id = DebugOnlyDeadlockCheck(this); bool res = LockSlowWithDeadline(kExclusive, &cond, KernelTimeout(deadline), 0); DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); return res; } void Mutex::ReaderLockWhen(const Condition &cond) { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); GraphId id = DebugOnlyDeadlockCheck(this); this->LockSlow(kShared, &cond, 0); DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); } bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) { return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout)); } bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline) { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); GraphId id = DebugOnlyDeadlockCheck(this); bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0); DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); return res; } void Mutex::Await(const Condition &cond) { if (cond.Eval()) { // condition already true; nothing to do if (kDebugMode) { this->AssertReaderHeld(); } } else { // normal case ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()), "condition untrue on return from Await"); } } bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) { return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout)); } bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) { if (cond.Eval()) { // condition already true; nothing to do if (kDebugMode) { this->AssertReaderHeld(); } return true; } KernelTimeout t{deadline}; bool res = this->AwaitCommon(cond, t); ABSL_RAW_CHECK(res || t.has_timeout(), "condition untrue on return from Await"); return res; } bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) { this->AssertReaderHeld(); MuHow how = (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared; ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how)); SynchWaitParams waitp( how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this), nullptr /*no cv_word*/); int flags = kMuHasBlocked; if (!Condition::GuaranteedEqual(&cond, nullptr)) { flags |= kMuIsCond; } this->UnlockSlow(&waitp); this->Block(waitp.thread); ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how)); ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how)); this->LockSlowLoop(&waitp, flags); bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop EvalConditionAnnotated(&cond, this, true, false, how == kShared); ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0); return res; } ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock); intptr_t v = mu_.load(std::memory_order_relaxed); if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire mu_.compare_exchange_strong(v, kMuWriter | v, std::memory_order_acquire, std::memory_order_relaxed)) { DebugOnlyLockEnter(this); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); return true; } if ((v & kMuEvent) != 0) { // we're recording events if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire mu_.compare_exchange_strong( v, (kExclusive->fast_or | v) + kExclusive->fast_add, std::memory_order_acquire, std::memory_order_relaxed)) { DebugOnlyLockEnter(this); PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); return true; } else { PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED); } } ABSL_TSAN_MUTEX_POST_LOCK( this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); return false; } ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock | __tsan_mutex_try_lock); intptr_t v = mu_.load(std::memory_order_relaxed); // The while-loops (here and below) iterate only if the mutex word keeps // changing (typically because the reader count changes) under the CAS. We // limit the number of attempts to avoid having to think about livelock. int loop_limit = 5; while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) { if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, std::memory_order_acquire, std::memory_order_relaxed)) { DebugOnlyLockEnter(this); ABSL_TSAN_MUTEX_POST_LOCK( this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); return true; } loop_limit--; v = mu_.load(std::memory_order_relaxed); } if ((v & kMuEvent) != 0) { // we're recording events loop_limit = 5; while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) { if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, std::memory_order_acquire, std::memory_order_relaxed)) { DebugOnlyLockEnter(this); PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS); ABSL_TSAN_MUTEX_POST_LOCK( this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); return true; } loop_limit--; v = mu_.load(std::memory_order_relaxed); } if ((v & kMuEvent) != 0) { PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED); } } ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock | __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); return false; } ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() { ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0); DebugOnlyLockLeave(this); intptr_t v = mu_.load(std::memory_order_relaxed); if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) { ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x", static_cast(v)); } // should_try_cas is whether we'll try a compare-and-swap immediately. // NOTE: optimized out when kDebugMode is false. bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter && (v & (kMuWait | kMuDesig)) != kMuWait); // But, we can use an alternate computation of it, that compilers // currently don't find on their own. When that changes, this function // can be simplified. intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent); intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig); // Claim: "x == 0 && y > 0" is equal to should_try_cas. // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait, // all possible non-zero values for x exceed all possible values for y. // Therefore, (x == 0 && y > 0) == (x < y). if (kDebugMode && should_try_cas != (x < y)) { // We would usually use PRIdPTR here, but is not correctly implemented // within the android toolchain. ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n", static_cast(v), static_cast(x), static_cast(y)); } if (x < y && mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), std::memory_order_release, std::memory_order_relaxed)) { // fast writer release (writer with no waiters or with designated waker) } else { this->UnlockSlow(nullptr /*no waitp*/); // take slow path } ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0); } // Requires v to represent a reader-locked state. static bool ExactlyOneReader(intptr_t v) { assert((v & (kMuWriter|kMuReader)) == kMuReader); assert((v & kMuHigh) != 0); // The more straightforward "(v & kMuHigh) == kMuOne" also works, but // on some architectures the following generates slightly smaller code. // It may be faster too. constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne; return (v & kMuMultipleWaitersMask) == 0; } ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() { ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock); DebugOnlyLockLeave(this); intptr_t v = mu_.load(std::memory_order_relaxed); assert((v & (kMuWriter|kMuReader)) == kMuReader); if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) { // fast reader release (reader with no waiters) intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne; if (mu_.compare_exchange_strong(v, v - clear, std::memory_order_release, std::memory_order_relaxed)) { ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); return; } } this->UnlockSlow(nullptr /*no waitp*/); // take slow path ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); } // The zap_desig_waker bitmask is used to clear the designated waker flag in // the mutex if this thread has blocked, and therefore may be the designated // waker. static const intptr_t zap_desig_waker[] = { ~static_cast(0), // not blocked ~static_cast( kMuDesig) // blocked; turn off the designated waker bit }; // The ignore_waiting_writers bitmask is used to ignore the existence // of waiting writers if a reader that has already blocked once // wakes up. static const intptr_t ignore_waiting_writers[] = { ~static_cast(0), // not blocked ~static_cast( kMuWrWait) // blocked; pretend there are no waiting writers }; // Internal version of LockWhen(). See LockSlowWithDeadline() ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition *cond, int flags) { ABSL_RAW_CHECK( this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags), "condition untrue on return from LockSlow"); } // Compute cond->Eval() and tell race detectors that we do it under mutex mu. static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu, bool locking, bool trylock, bool read_lock) { // Delicate annotation dance. // We are currently inside of read/write lock/unlock operation. // All memory accesses are ignored inside of mutex operations + for unlock // operation tsan considers that we've already released the mutex. bool res = false; #ifdef THREAD_SANITIZER const int flags = read_lock ? __tsan_mutex_read_lock : 0; const int tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0); #endif if (locking) { // For lock we pretend that we have finished the operation, // evaluate the predicate, then unlock the mutex and start locking it again // to match the annotation at the end of outer lock operation. // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan // will think the lock acquisition is recursive which will trigger // deadlock detector. ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0); res = cond->Eval(); // There is no "try" version of Unlock, so use flags instead of tryflags. ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags); ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags); ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags); } else { // Similarly, for unlock we pretend that we have unlocked the mutex, // lock the mutex, evaluate the predicate, and start unlocking it again // to match the annotation at the end of outer unlock operation. ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags); ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags); ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0); res = cond->Eval(); ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags); } // Prevent unused param warnings in non-TSAN builds. static_cast(mu); static_cast(trylock); static_cast(read_lock); return res; } // Compute cond->Eval() hiding it from race detectors. // We are hiding it because inside of UnlockSlow we can evaluate a predicate // that was just added by a concurrent Lock operation; Lock adds the predicate // to the internal Mutex list without actually acquiring the Mutex // (it only acquires the internal spinlock, which is rightfully invisible for // tsan). As the result there is no tsan-visible synchronization between the // addition and this thread. So if we would enable race detection here, // it would race with the predicate initialization. static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) { // Memory accesses are already ignored inside of lock/unlock operations, // but synchronization operations are also ignored. When we evaluate the // predicate we must ignore only memory accesses but not synchronization, // because missed synchronization can lead to false reports later. // So we "divert" (which un-ignores both memory accesses and synchronization) // and then separately turn on ignores of memory accesses. ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); bool res = cond->Eval(); ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END(); ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); static_cast(mu); // Prevent unused param warning in non-TSAN builds. return res; } // Internal equivalent of *LockWhenWithDeadline(), where // "t" represents the absolute timeout; !t.has_timeout() means "forever". // "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen) // In flags, bits are ored together: // - kMuHasBlocked indicates that the client has already blocked on the call so // the designated waker bit must be cleared and waiting writers should not // obstruct this call // - kMuIsCond indicates that this is a conditional acquire (condition variable, // Await, LockWhen) so contention profiling should be suppressed. bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond, KernelTimeout t, int flags) { intptr_t v = mu_.load(std::memory_order_relaxed); bool unlock = false; if ((v & how->fast_need_zero) == 0 && // try fast acquire mu_.compare_exchange_strong( v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) + how->fast_add, std::memory_order_acquire, std::memory_order_relaxed)) { if (cond == nullptr || EvalConditionAnnotated(cond, this, true, false, how == kShared)) { return true; } unlock = true; } SynchWaitParams waitp( how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this), nullptr /*no cv_word*/); if (!Condition::GuaranteedEqual(cond, nullptr)) { flags |= kMuIsCond; } if (unlock) { this->UnlockSlow(&waitp); this->Block(waitp.thread); flags |= kMuHasBlocked; } this->LockSlowLoop(&waitp, flags); return waitp.cond != nullptr || // => cond known true from LockSlowLoop cond == nullptr || EvalConditionAnnotated(cond, this, true, false, how == kShared); } // RAW_CHECK_FMT() takes a condition, a printf-style format string, and // the printf-style argument list. The format string must be a literal. // Arguments after the first are not evaluated unless the condition is true. #define RAW_CHECK_FMT(cond, ...) \ do { \ if (ABSL_PREDICT_FALSE(!(cond))) { \ ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \ } \ } while (0) static void CheckForMutexCorruption(intptr_t v, const char* label) { // Test for either of two situations that should not occur in v: // kMuWriter and kMuReader // kMuWrWait and !kMuWait const uintptr_t w = v ^ kMuWait; // By flipping that bit, we can now test for: // kMuWriter and kMuReader in w // kMuWrWait and kMuWait in w // We've chosen these two pairs of values to be so that they will overlap, // respectively, when the word is left shifted by three. This allows us to // save a branch in the common (correct) case of them not being coincident. static_assert(kMuReader << 3 == kMuWriter, "must match"); static_assert(kMuWait << 3 == kMuWrWait, "must match"); if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return; RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader), "%s: Mutex corrupt: both reader and writer lock held: %p", label, reinterpret_cast(v)); RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait, "%s: Mutex corrupt: waiting writer with no waiters: %p", label, reinterpret_cast(v)); assert(false); } void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) { int c = 0; intptr_t v = mu_.load(std::memory_order_relaxed); if ((v & kMuEvent) != 0) { PostSynchEvent(this, waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK); } ABSL_RAW_CHECK( waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, "detected illegal recursion into Mutex code"); for (;;) { v = mu_.load(std::memory_order_relaxed); CheckForMutexCorruption(v, "Lock"); if ((v & waitp->how->slow_need_zero) == 0) { if (mu_.compare_exchange_strong( v, (waitp->how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) + waitp->how->fast_add, std::memory_order_acquire, std::memory_order_relaxed)) { if (waitp->cond == nullptr || EvalConditionAnnotated(waitp->cond, this, true, false, waitp->how == kShared)) { break; // we timed out, or condition true, so return } this->UnlockSlow(waitp); // got lock but condition false this->Block(waitp->thread); flags |= kMuHasBlocked; c = 0; } } else { // need to access waiter list bool dowait = false; if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters // This thread tries to become the one and only waiter. PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags); intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) | kMuWait; ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed"); if (waitp->how == kExclusive && (v & kMuReader) != 0) { nv |= kMuWrWait; } if (mu_.compare_exchange_strong( v, reinterpret_cast(new_h) | nv, std::memory_order_release, std::memory_order_relaxed)) { dowait = true; } else { // attempted Enqueue() failed // zero out the waitp field set by Enqueue() waitp->thread->waitp = nullptr; } } else if ((v & waitp->how->slow_inc_need_zero & ignore_waiting_writers[flags & kMuHasBlocked]) == 0) { // This is a reader that needs to increment the reader count, // but the count is currently held in the last waiter. if (mu_.compare_exchange_strong( v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin | kMuReader, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch *h = GetPerThreadSynch(v); h->readers += kMuOne; // inc reader count in waiter do { // release spinlock v = mu_.load(std::memory_order_relaxed); } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader, std::memory_order_release, std::memory_order_relaxed)); if (waitp->cond == nullptr || EvalConditionAnnotated(waitp->cond, this, true, false, waitp->how == kShared)) { break; // we timed out, or condition true, so return } this->UnlockSlow(waitp); // got lock but condition false this->Block(waitp->thread); flags |= kMuHasBlocked; c = 0; } } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves mu_.compare_exchange_strong( v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin | kMuWait, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch *h = GetPerThreadSynch(v); PerThreadSynch *new_h = Enqueue(h, waitp, v, flags); intptr_t wr_wait = 0; ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed"); if (waitp->how == kExclusive && (v & kMuReader) != 0) { wr_wait = kMuWrWait; // give priority to a waiting writer } do { // release spinlock v = mu_.load(std::memory_order_relaxed); } while (!mu_.compare_exchange_weak( v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait | reinterpret_cast(new_h), std::memory_order_release, std::memory_order_relaxed)); dowait = true; } if (dowait) { this->Block(waitp->thread); // wait until removed from list or timeout flags |= kMuHasBlocked; c = 0; } } ABSL_RAW_CHECK( waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, "detected illegal recursion into Mutex code"); c = Delay(c, GENTLE); // delay, then try again } ABSL_RAW_CHECK( waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, "detected illegal recursion into Mutex code"); if ((v & kMuEvent) != 0) { PostSynchEvent(this, waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING : SYNCH_EV_READERLOCK_RETURNING); } } // Unlock this mutex, which is held by the current thread. // If waitp is non-zero, it must be the wait parameters for the current thread // which holds the lock but is not runnable because its condition is false // or it is in the process of blocking on a condition variable; it must requeue // itself on the mutex/condvar to wait for its condition to become true. ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams *waitp) { intptr_t v = mu_.load(std::memory_order_relaxed); this->AssertReaderHeld(); CheckForMutexCorruption(v, "Unlock"); if ((v & kMuEvent) != 0) { PostSynchEvent(this, (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK); } int c = 0; // the waiter under consideration to wake, or zero PerThreadSynch *w = nullptr; // the predecessor to w or zero PerThreadSynch *pw = nullptr; // head of the list searched previously, or zero PerThreadSynch *old_h = nullptr; // a condition that's known to be false. const Condition *known_false = nullptr; PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a // later writer could have acquired the lock // (starvation avoidance) ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, "detected illegal recursion into Mutex code"); // This loop finds threads wake_list to wakeup if any, and removes them from // the list of waiters. In addition, it places waitp.thread on the queue of // waiters if waitp is non-zero. for (;;) { v = mu_.load(std::memory_order_relaxed); if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait && waitp == nullptr) { // fast writer release (writer with no waiters or with designated waker) if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), std::memory_order_release, std::memory_order_relaxed)) { return; } } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) { // fast reader release (reader with no waiters) intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne; if (mu_.compare_exchange_strong(v, v - clear, std::memory_order_release, std::memory_order_relaxed)) { return; } } else if ((v & kMuSpin) == 0 && // attempt to get spinlock mu_.compare_exchange_strong(v, v | kMuSpin, std::memory_order_acquire, std::memory_order_relaxed)) { if ((v & kMuWait) == 0) { // no one to wake intptr_t nv; bool do_enqueue = true; // always Enqueue() the first time ABSL_RAW_CHECK(waitp != nullptr, "UnlockSlow is confused"); // about to sleep do { // must loop to release spinlock as reader count may change v = mu_.load(std::memory_order_relaxed); // decrement reader count if there are readers intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v; PerThreadSynch *new_h = nullptr; if (do_enqueue) { // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then // we must not retry here. The initial attempt will always have // succeeded, further attempts would enqueue us against *this due to // Fer() handling. do_enqueue = (waitp->cv_word == nullptr); new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond); } intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader clear = kMuWrWait | kMuReader; // clear read bit } nv = (v & kMuLow & ~clear & ~kMuSpin); if (new_h != nullptr) { nv |= kMuWait | reinterpret_cast(new_h); } else { // new_h could be nullptr if we queued ourselves on a // CondVar // In that case, we must place the reader count back in the mutex // word, as Enqueue() did not store it in the new waiter. nv |= new_readers & kMuHigh; } // release spinlock & our lock; retry if reader-count changed // (writer count cannot change since we hold lock) } while (!mu_.compare_exchange_weak(v, nv, std::memory_order_release, std::memory_order_relaxed)); break; } // There are waiters. // Set h to the head of the circular waiter list. PerThreadSynch *h = GetPerThreadSynch(v); if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) { // a reader but not the last h->readers -= kMuOne; // release our lock intptr_t nv = v; // normally just release spinlock if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond); ABSL_RAW_CHECK(new_h != nullptr, "waiters disappeared during Enqueue()!"); nv &= kMuLow; nv |= kMuWait | reinterpret_cast(new_h); } mu_.store(nv, std::memory_order_release); // release spinlock // can release with a store because there were waiters break; } // Either we didn't search before, or we marked the queue // as "maybe_unlocking" and no one else should have changed it. ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking, "Mutex queue changed beneath us"); // The lock is becoming free, and there's a waiter if (old_h != nullptr && !old_h->may_skip) { // we used old_h as a terminator old_h->may_skip = true; // allow old_h to skip once more ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head"); if (h != old_h && MuSameCondition(old_h, old_h->next)) { old_h->skip = old_h->next; // old_h not head & can skip to successor } } if (h->next->waitp->how == kExclusive && Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) { // easy case: writer with no condition; no need to search pw = h; // wake w, the successor of h (=pw) w = h->next; w->wake = true; // We are waking up a writer. This writer may be racing against // an already awake reader for the lock. We want the // writer to usually win this race, // because if it doesn't, we can potentially keep taking a reader // perpetually and writers will starve. Worse than // that, this can also starve other readers if kMuWrWait gets set // later. wr_wait = kMuWrWait; } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) { // we found a waiter w to wake on a previous iteration and either it's // a writer, or we've searched the entire list so we have all the // readers. if (pw == nullptr) { // if w's predecessor is unknown, it must be h pw = h; } } else { // At this point we don't know all the waiters to wake, and the first // waiter has a condition or is a reader. We avoid searching over // waiters we've searched on previous iterations by starting at // old_h if it's set. If old_h==h, there's no one to wakeup at all. if (old_h == h) { // we've searched before, and nothing's new // so there's no one to wake. intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait)); h->readers = 0; h->maybe_unlocking = false; // finished unlocking if (waitp != nullptr) { // we must queue ourselves and sleep PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond); nv &= kMuLow; if (new_h != nullptr) { nv |= kMuWait | reinterpret_cast(new_h); } // else new_h could be nullptr if we queued ourselves on a // CondVar } // release spinlock & lock // can release with a store because there were waiters mu_.store(nv, std::memory_order_release); break; } // set up to walk the list PerThreadSynch *w_walk; // current waiter during list walk PerThreadSynch *pw_walk; // previous waiter during list walk if (old_h != nullptr) { // we've searched up to old_h before pw_walk = old_h; w_walk = old_h->next; } else { // no prior search, start at beginning pw_walk = nullptr; // h->next's predecessor may change; don't record it w_walk = h->next; } h->may_skip = false; // ensure we never skip past h in future searches // even if other waiters are queued after it. ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head"); h->maybe_unlocking = true; // we're about to scan the waiter list // without the spinlock held. // Enqueue must be conservative about // priority queuing. // We must release the spinlock to evaluate the conditions. mu_.store(v, std::memory_order_release); // release just spinlock // can release with a store because there were waiters // h is the last waiter queued, and w_walk the first unsearched waiter. // Without the spinlock, the locations mu_ and h->next may now change // underneath us, but since we hold the lock itself, the only legal // change is to add waiters between h and w_walk. Therefore, it's safe // to walk the path from w_walk to h inclusive. (TryRemove() can remove // a waiter anywhere, but it acquires both the spinlock and the Mutex) old_h = h; // remember we searched to here // Walk the path upto and including h looking for waiters we can wake. while (pw_walk != h) { w_walk->wake = false; if (w_walk->waitp->cond == nullptr || // no condition => vacuously true OR (w_walk->waitp->cond != known_false && // this thread's condition is not known false, AND // is in fact true EvalConditionIgnored(this, w_walk->waitp->cond))) { if (w == nullptr) { w_walk->wake = true; // can wake this waiter w = w_walk; pw = pw_walk; if (w_walk->waitp->how == kExclusive) { wr_wait = kMuWrWait; break; // bail if waking this writer } } else if (w_walk->waitp->how == kShared) { // wake if a reader w_walk->wake = true; } else { // writer with true condition wr_wait = kMuWrWait; } } else { // can't wake; condition false known_false = w_walk->waitp->cond; // remember last false condition } if (w_walk->wake) { // we're waking reader w_walk pw_walk = w_walk; // don't skip similar waiters } else { // not waking; skip as much as possible pw_walk = Skip(w_walk); } // If pw_walk == h, then load of pw_walk->next can race with // concurrent write in Enqueue(). However, at the same time // we do not need to do the load, because we will bail out // from the loop anyway. if (pw_walk != h) { w_walk = pw_walk->next; } } continue; // restart for(;;)-loop to wakeup w or to find more waiters } ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor"); // The first (and perhaps only) waiter we've chosen to wake is w, whose // predecessor is pw. If w is a reader, we must wake all the other // waiters with wake==true as well. We may also need to queue // ourselves if waitp != null. The spinlock and the lock are still // held. // This traverses the list in [ pw->next, h ], where h is the head, // removing all elements with wake==true and placing them in the // singly-linked list wake_list. Returns the new head. h = DequeueAllWakeable(h, pw, &wake_list); intptr_t nv = (v & kMuEvent) | kMuDesig; // assume no waiters left, // set kMuDesig for INV1a if (waitp != nullptr) { // we must queue ourselves and sleep h = Enqueue(h, waitp, v, kMuIsCond); // h is new last waiter; could be null if we queued ourselves on a // CondVar } ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull, "unexpected empty wake list"); if (h != nullptr) { // there are waiters left h->readers = 0; h->maybe_unlocking = false; // finished unlocking nv |= wr_wait | kMuWait | reinterpret_cast(h); } // release both spinlock & lock // can release with a store because there were waiters mu_.store(nv, std::memory_order_release); break; // out of for(;;)-loop } c = Delay(c, AGGRESSIVE); // aggressive here; no one can proceed till we do } // end of for(;;)-loop if (wake_list != kPerThreadSynchNull) { int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles; bool cond_waiter = wake_list->cond_waiter; do { wake_list = Wakeup(wake_list); // wake waiters } while (wake_list != kPerThreadSynchNull); if (!cond_waiter) { // Sample lock contention events only if the (first) waiter was trying to // acquire the lock, not waiting on a condition variable or Condition. int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp; mutex_tracer("slow release", this, wait_cycles); ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0); submit_profile_data(enqueue_timestamp); ABSL_TSAN_MUTEX_POST_DIVERT(this, 0); } } } // Used by CondVar implementation to reacquire mutex after waking from // condition variable. This routine is used instead of Lock() because the // waiting thread may have been moved from the condition variable queue to the // mutex queue without a wakeup, by Trans(). In that case, when the thread is // finally woken, the woken thread will believe it has been woken from the // condition variable (i.e. its PC will be in when in the CondVar code), when // in fact it has just been woken from the mutex. Thus, it must enter the slow // path of the mutex in the same state as if it had just woken from the mutex. // That is, it must ensure to clear kMuDesig (INV1b). void Mutex::Trans(MuHow how) { this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond); } // Used by CondVar implementation to effectively wake thread w from the // condition variable. If this mutex is free, we simply wake the thread. // It will later acquire the mutex with high probability. Otherwise, we // enqueue thread w on this mutex. void Mutex::Fer(PerThreadSynch *w) { int c = 0; ABSL_RAW_CHECK(w->waitp->cond == nullptr, "Mutex::Fer while waiting on Condition"); ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(), "Mutex::Fer while in timed wait"); ABSL_RAW_CHECK(w->waitp->cv_word == nullptr, "Mutex::Fer with pending CondVar queueing"); for (;;) { intptr_t v = mu_.load(std::memory_order_relaxed); // Note: must not queue if the mutex is unlocked (nobody will wake it). // For example, we can have only kMuWait (conditional) or maybe // kMuWait|kMuWrWait. // conflicting != 0 implies that the waking thread cannot currently take // the mutex, which in turn implies that someone else has it and can wake // us if we queue. const intptr_t conflicting = kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader); if ((v & conflicting) == 0) { w->next = nullptr; w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); IncrementSynchSem(this, w); return; } else { if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters // This thread tries to become the one and only waiter. PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond); ABSL_RAW_CHECK(new_h != nullptr, "Enqueue failed"); // we must queue ourselves if (mu_.compare_exchange_strong( v, reinterpret_cast(new_h) | (v & kMuLow) | kMuWait, std::memory_order_release, std::memory_order_relaxed)) { return; } } else if ((v & kMuSpin) == 0 && mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) { PerThreadSynch *h = GetPerThreadSynch(v); PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond); ABSL_RAW_CHECK(new_h != nullptr, "Enqueue failed"); // we must queue ourselves do { v = mu_.load(std::memory_order_relaxed); } while (!mu_.compare_exchange_weak( v, (v & kMuLow & ~kMuSpin) | kMuWait | reinterpret_cast(new_h), std::memory_order_release, std::memory_order_relaxed)); return; } } c = Delay(c, GENTLE); } } void Mutex::AssertHeld() const { if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) { SynchEvent *e = GetSynchEvent(this); ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s", static_cast(this), (e == nullptr ? "" : e->name)); } } void Mutex::AssertReaderHeld() const { if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) { SynchEvent *e = GetSynchEvent(this); ABSL_RAW_LOG( FATAL, "thread should hold at least a read lock on Mutex %p %s", static_cast(this), (e == nullptr ? "" : e->name)); } } // -------------------------------- condition variables static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list static const intptr_t kCvEvent = 0x0002L; // record events static const intptr_t kCvLow = 0x0003L; // low order bits of CV // Hack to make constant values available to gdb pretty printer enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, }; static_assert(PerThreadSynch::kAlignment > kCvLow, "PerThreadSynch::kAlignment must be greater than kCvLow"); void CondVar::EnableDebugLog(const char *name) { SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin); e->log = true; UnrefSynchEvent(e); } CondVar::~CondVar() { if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) { ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin); } } // Remove thread s from the list of waiters on this condition variable. void CondVar::Remove(PerThreadSynch *s) { intptr_t v; int c = 0; for (v = cv_.load(std::memory_order_relaxed);; v = cv_.load(std::memory_order_relaxed)) { if ((v & kCvSpin) == 0 && // attempt to acquire spinlock cv_.compare_exchange_strong(v, v | kCvSpin, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch *h = reinterpret_cast(v & ~kCvLow); if (h != nullptr) { PerThreadSynch *w = h; while (w->next != s && w->next != h) { // search for thread w = w->next; } if (w->next == s) { // found thread; remove it w->next = s->next; if (h == s) { h = (w == s) ? nullptr : w; } s->next = nullptr; s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); } } // release spinlock cv_.store((v & kCvEvent) | reinterpret_cast(h), std::memory_order_release); return; } else { c = Delay(c, GENTLE); // try again after a delay } } } // Queue thread waitp->thread on condition variable word cv_word using // wait parameters waitp. // We split this into a separate routine, rather than simply doing it as part // of WaitCommon(). If we were to queue ourselves on the condition variable // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via // the logging code, or via a Condition function) and might potentially attempt // to block this thread. That would be a problem if the thread were already on // a the condition variable waiter queue. Thus, we use the waitp->cv_word // to tell the unlock code to call CondVarEnqueue() to queue the thread on the // condition variable queue just before the mutex is to be unlocked, and (most // importantly) after any call to an external routine that might re-enter the // mutex code. static void CondVarEnqueue(SynchWaitParams *waitp) { // This thread might be transferred to the Mutex queue by Fer() when // we are woken. To make sure that is what happens, Enqueue() doesn't // call CondVarEnqueue() again but instead uses its normal code. We // must do this before we queue ourselves so that cv_word will be null // when seen by the dequeuer, who may wish immediately to requeue // this thread on another queue. std::atomic *cv_word = waitp->cv_word; waitp->cv_word = nullptr; intptr_t v = cv_word->load(std::memory_order_relaxed); int c = 0; while ((v & kCvSpin) != 0 || // acquire spinlock !cv_word->compare_exchange_weak(v, v | kCvSpin, std::memory_order_acquire, std::memory_order_relaxed)) { c = Delay(c, GENTLE); v = cv_word->load(std::memory_order_relaxed); } ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be"); waitp->thread->waitp = waitp; // prepare ourselves for waiting PerThreadSynch *h = reinterpret_cast(v & ~kCvLow); if (h == nullptr) { // add this thread to waiter list waitp->thread->next = waitp->thread; } else { waitp->thread->next = h->next; h->next = waitp->thread; } waitp->thread->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed); cv_word->store((v & kCvEvent) | reinterpret_cast(waitp->thread), std::memory_order_release); } bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) { bool rc = false; // return value; true iff we timed-out intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed); Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared; ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how)); // maybe trace this call intptr_t v = cv_.load(std::memory_order_relaxed); cond_var_tracer("Wait", this); if ((v & kCvEvent) != 0) { PostSynchEvent(this, SYNCH_EV_WAIT); } // Release mu and wait on condition variable. SynchWaitParams waitp(mutex_how, nullptr, t, mutex, Synch_GetPerThreadAnnotated(mutex), &cv_); // UnlockSlow() will call CondVarEnqueue() just before releasing the // Mutex, thus queuing this thread on the condition variable. See // CondVarEnqueue() for the reasons. mutex->UnlockSlow(&waitp); // wait for signal while (waitp.thread->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) { if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) { this->Remove(waitp.thread); rc = true; } } ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be"); waitp.thread->waitp = nullptr; // cleanup // maybe trace this call cond_var_tracer("Unwait", this); if ((v & kCvEvent) != 0) { PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING); } // From synchronization point of view Wait is unlock of the mutex followed // by lock of the mutex. We've annotated start of unlock in the beginning // of the function. Now, finish unlock and annotate lock of the mutex. // (Trans is effectively lock). ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how)); ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how)); mutex->Trans(mutex_how); // Reacquire mutex ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0); return rc; } bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) { return WaitWithDeadline(mu, DeadlineFromTimeout(timeout)); } bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) { return WaitCommon(mu, KernelTimeout(deadline)); } void CondVar::Wait(Mutex *mu) { WaitCommon(mu, KernelTimeout::Never()); } // Wake thread w // If it was a timed wait, w will be waiting on w->cv // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer(). void CondVar::Wakeup(PerThreadSynch *w) { if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) { // The waiting thread only needs to observe "w->state == kAvailable" to be // released, we must cache "cvmu" before clearing "next". Mutex *mu = w->waitp->cvmu; w->next = nullptr; w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); Mutex::IncrementSynchSem(mu, w); } else { w->waitp->cvmu->Fer(w); } } void CondVar::Signal() { ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0); intptr_t v; int c = 0; for (v = cv_.load(std::memory_order_relaxed); v != 0; v = cv_.load(std::memory_order_relaxed)) { if ((v & kCvSpin) == 0 && // attempt to acquire spinlock cv_.compare_exchange_strong(v, v | kCvSpin, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch *h = reinterpret_cast(v & ~kCvLow); PerThreadSynch *w = nullptr; if (h != nullptr) { // remove first waiter w = h->next; if (w == h) { h = nullptr; } else { h->next = w->next; } } // release spinlock cv_.store((v & kCvEvent) | reinterpret_cast(h), std::memory_order_release); if (w != nullptr) { CondVar::Wakeup(w); // wake waiter, if there was one cond_var_tracer("Signal wakeup", this); } if ((v & kCvEvent) != 0) { PostSynchEvent(this, SYNCH_EV_SIGNAL); } ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); return; } else { c = Delay(c, GENTLE); } } ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); } void CondVar::SignalAll () { ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0); intptr_t v; int c = 0; for (v = cv_.load(std::memory_order_relaxed); v != 0; v = cv_.load(std::memory_order_relaxed)) { // empty the list if spinlock free // We do this by simply setting the list to empty using // compare and swap. We then have the entire list in our hands, // which cannot be changing since we grabbed it while no one // held the lock. if ((v & kCvSpin) == 0 && cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch *h = reinterpret_cast(v & ~kCvLow); if (h != nullptr) { PerThreadSynch *w; PerThreadSynch *n = h->next; do { // for every thread, wake it up w = n; n = n->next; CondVar::Wakeup(w); } while (w != h); cond_var_tracer("SignalAll wakeup", this); } if ((v & kCvEvent) != 0) { PostSynchEvent(this, SYNCH_EV_SIGNALALL); } ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); return; } else { c = Delay(c, GENTLE); // try again after a delay } } ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); } void ReleasableMutexLock::Release() { ABSL_RAW_CHECK(this->mu_ != nullptr, "ReleasableMutexLock::Release may only be called once"); this->mu_->Unlock(); this->mu_ = nullptr; } #ifdef THREAD_SANITIZER extern "C" void __tsan_read1(void *addr); #else #define __tsan_read1(addr) // do nothing if TSan not enabled #endif // A function that just returns its argument, dereferenced static bool Dereference(void *arg) { // ThreadSanitizer does not instrument this file for memory accesses. // This function dereferences a user variable that can participate // in a data race, so we need to manually tell TSan about this memory access. __tsan_read1(arg); return *(static_cast(arg)); } Condition::Condition() {} // null constructor, used for kTrue only const Condition Condition::kTrue; Condition::Condition(bool (*func)(void *), void *arg) : eval_(&CallVoidPtrFunction), function_(func), method_(nullptr), arg_(arg) {} bool Condition::CallVoidPtrFunction(const Condition *c) { return (*c->function_)(c->arg_); } Condition::Condition(const bool *cond) : eval_(CallVoidPtrFunction), function_(Dereference), method_(nullptr), // const_cast is safe since Dereference does not modify arg arg_(const_cast(cond)) {} bool Condition::Eval() const { // eval_ == null for kTrue return (this->eval_ == nullptr) || (*this->eval_)(this); } bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) { if (a == nullptr) { return b == nullptr || b->eval_ == nullptr; } if (b == nullptr || b->eval_ == nullptr) { return a->eval_ == nullptr; } return a->eval_ == b->eval_ && a->function_ == b->function_ && a->arg_ == b->arg_ && a->method_ == b->method_; } ABSL_NAMESPACE_END } // namespace absl