/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "common_video/h264/sps_parser.h" #include #include #include "common_video/h264/h264_common.h" #include "rtc_base/bit_buffer.h" namespace { typedef absl::optional OptionalSps; #define RETURN_EMPTY_ON_FAIL(x) \ if (!(x)) { \ return OptionalSps(); \ } constexpr int kScalingDeltaMin = -128; constexpr int kScaldingDeltaMax = 127; } // namespace namespace webrtc { SpsParser::SpsState::SpsState() = default; SpsParser::SpsState::SpsState(const SpsState&) = default; SpsParser::SpsState::~SpsState() = default; // General note: this is based off the 02/2014 version of the H.264 standard. // You can find it on this page: // http://www.itu.int/rec/T-REC-H.264 // Unpack RBSP and parse SPS state from the supplied buffer. absl::optional SpsParser::ParseSps(const uint8_t* data, size_t length) { std::vector unpacked_buffer = H264::ParseRbsp(data, length); rtc::BitBuffer bit_buffer(unpacked_buffer.data(), unpacked_buffer.size()); return ParseSpsUpToVui(&bit_buffer); } absl::optional SpsParser::ParseSpsUpToVui( rtc::BitBuffer* buffer) { // Now, we need to use a bit buffer to parse through the actual AVC SPS // format. See Section 7.3.2.1.1 ("Sequence parameter set data syntax") of the // H.264 standard for a complete description. // Since we only care about resolution, we ignore the majority of fields, but // we still have to actively parse through a lot of the data, since many of // the fields have variable size. // We're particularly interested in: // chroma_format_idc -> affects crop units // pic_{width,height}_* -> resolution of the frame in macroblocks (16x16). // frame_crop_*_offset -> crop information SpsState sps; // The golomb values we have to read, not just consume. uint32_t golomb_ignored; // chroma_format_idc will be ChromaArrayType if separate_colour_plane_flag is // 0. It defaults to 1, when not specified. uint32_t chroma_format_idc = 1; // profile_idc: u(8). We need it to determine if we need to read/skip chroma // formats. uint8_t profile_idc; RETURN_EMPTY_ON_FAIL(buffer->ReadUInt8(&profile_idc)); // constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits // 1 bit each for the flags + 2 bits = 8 bits = 1 byte. RETURN_EMPTY_ON_FAIL(buffer->ConsumeBytes(1)); // level_idc: u(8) RETURN_EMPTY_ON_FAIL(buffer->ConsumeBytes(1)); // seq_parameter_set_id: ue(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.id)); sps.separate_colour_plane_flag = 0; // See if profile_idc has chroma format information. if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 || profile_idc == 244 || profile_idc == 44 || profile_idc == 83 || profile_idc == 86 || profile_idc == 118 || profile_idc == 128 || profile_idc == 138 || profile_idc == 139 || profile_idc == 134) { // chroma_format_idc: ue(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&chroma_format_idc)); if (chroma_format_idc == 3) { // separate_colour_plane_flag: u(1) RETURN_EMPTY_ON_FAIL( buffer->ReadBits(&sps.separate_colour_plane_flag, 1)); } // bit_depth_luma_minus8: ue(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); // bit_depth_chroma_minus8: ue(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); // qpprime_y_zero_transform_bypass_flag: u(1) RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1)); // seq_scaling_matrix_present_flag: u(1) uint32_t seq_scaling_matrix_present_flag; RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&seq_scaling_matrix_present_flag, 1)); if (seq_scaling_matrix_present_flag) { // Process the scaling lists just enough to be able to properly // skip over them, so we can still read the resolution on streams // where this is included. int scaling_list_count = (chroma_format_idc == 3 ? 12 : 8); for (int i = 0; i < scaling_list_count; ++i) { // seq_scaling_list_present_flag[i] : u(1) uint32_t seq_scaling_list_present_flags; RETURN_EMPTY_ON_FAIL( buffer->ReadBits(&seq_scaling_list_present_flags, 1)); if (seq_scaling_list_present_flags != 0) { int last_scale = 8; int next_scale = 8; int size_of_scaling_list = i < 6 ? 16 : 64; for (int j = 0; j < size_of_scaling_list; j++) { if (next_scale != 0) { int32_t delta_scale; // delta_scale: se(v) RETURN_EMPTY_ON_FAIL( buffer->ReadSignedExponentialGolomb(&delta_scale)); RETURN_EMPTY_ON_FAIL(delta_scale >= kScalingDeltaMin && delta_scale <= kScaldingDeltaMax); next_scale = (last_scale + delta_scale + 256) % 256; } if (next_scale != 0) last_scale = next_scale; } } } } } // log2_max_frame_num and log2_max_pic_order_cnt_lsb are used with // BitBuffer::ReadBits, which can read at most 32 bits at a time. We also have // to avoid overflow when adding 4 to the on-wire golomb value, e.g., for evil // input data, ReadExponentialGolomb might return 0xfffc. const uint32_t kMaxLog2Minus4 = 32 - 4; // log2_max_frame_num_minus4: ue(v) uint32_t log2_max_frame_num_minus4; if (!buffer->ReadExponentialGolomb(&log2_max_frame_num_minus4) || log2_max_frame_num_minus4 > kMaxLog2Minus4) { return OptionalSps(); } sps.log2_max_frame_num = log2_max_frame_num_minus4 + 4; // pic_order_cnt_type: ue(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.pic_order_cnt_type)); if (sps.pic_order_cnt_type == 0) { // log2_max_pic_order_cnt_lsb_minus4: ue(v) uint32_t log2_max_pic_order_cnt_lsb_minus4; if (!buffer->ReadExponentialGolomb(&log2_max_pic_order_cnt_lsb_minus4) || log2_max_pic_order_cnt_lsb_minus4 > kMaxLog2Minus4) { return OptionalSps(); } sps.log2_max_pic_order_cnt_lsb = log2_max_pic_order_cnt_lsb_minus4 + 4; } else if (sps.pic_order_cnt_type == 1) { // delta_pic_order_always_zero_flag: u(1) RETURN_EMPTY_ON_FAIL( buffer->ReadBits(&sps.delta_pic_order_always_zero_flag, 1)); // offset_for_non_ref_pic: se(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); // offset_for_top_to_bottom_field: se(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); // num_ref_frames_in_pic_order_cnt_cycle: ue(v) uint32_t num_ref_frames_in_pic_order_cnt_cycle; RETURN_EMPTY_ON_FAIL( buffer->ReadExponentialGolomb(&num_ref_frames_in_pic_order_cnt_cycle)); for (size_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; ++i) { // offset_for_ref_frame[i]: se(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&golomb_ignored)); } } // max_num_ref_frames: ue(v) RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&sps.max_num_ref_frames)); // gaps_in_frame_num_value_allowed_flag: u(1) RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1)); // // IMPORTANT ONES! Now we're getting to resolution. First we read the pic // width/height in macroblocks (16x16), which gives us the base resolution, // and then we continue on until we hit the frame crop offsets, which are used // to signify resolutions that aren't multiples of 16. // // pic_width_in_mbs_minus1: ue(v) uint32_t pic_width_in_mbs_minus1; RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&pic_width_in_mbs_minus1)); // pic_height_in_map_units_minus1: ue(v) uint32_t pic_height_in_map_units_minus1; RETURN_EMPTY_ON_FAIL( buffer->ReadExponentialGolomb(&pic_height_in_map_units_minus1)); // frame_mbs_only_flag: u(1) RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&sps.frame_mbs_only_flag, 1)); if (!sps.frame_mbs_only_flag) { // mb_adaptive_frame_field_flag: u(1) RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1)); } // direct_8x8_inference_flag: u(1) RETURN_EMPTY_ON_FAIL(buffer->ConsumeBits(1)); // // MORE IMPORTANT ONES! Now we're at the frame crop information. // // frame_cropping_flag: u(1) uint32_t frame_cropping_flag; uint32_t frame_crop_left_offset = 0; uint32_t frame_crop_right_offset = 0; uint32_t frame_crop_top_offset = 0; uint32_t frame_crop_bottom_offset = 0; RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&frame_cropping_flag, 1)); if (frame_cropping_flag) { // frame_crop_{left, right, top, bottom}_offset: ue(v) RETURN_EMPTY_ON_FAIL( buffer->ReadExponentialGolomb(&frame_crop_left_offset)); RETURN_EMPTY_ON_FAIL( buffer->ReadExponentialGolomb(&frame_crop_right_offset)); RETURN_EMPTY_ON_FAIL(buffer->ReadExponentialGolomb(&frame_crop_top_offset)); RETURN_EMPTY_ON_FAIL( buffer->ReadExponentialGolomb(&frame_crop_bottom_offset)); } // vui_parameters_present_flag: u(1) RETURN_EMPTY_ON_FAIL(buffer->ReadBits(&sps.vui_params_present, 1)); // Far enough! We don't use the rest of the SPS. // Start with the resolution determined by the pic_width/pic_height fields. sps.width = 16 * (pic_width_in_mbs_minus1 + 1); sps.height = 16 * (2 - sps.frame_mbs_only_flag) * (pic_height_in_map_units_minus1 + 1); // Figure out the crop units in pixels. That's based on the chroma format's // sampling, which is indicated by chroma_format_idc. if (sps.separate_colour_plane_flag || chroma_format_idc == 0) { frame_crop_bottom_offset *= (2 - sps.frame_mbs_only_flag); frame_crop_top_offset *= (2 - sps.frame_mbs_only_flag); } else if (!sps.separate_colour_plane_flag && chroma_format_idc > 0) { // Width multipliers for formats 1 (4:2:0) and 2 (4:2:2). if (chroma_format_idc == 1 || chroma_format_idc == 2) { frame_crop_left_offset *= 2; frame_crop_right_offset *= 2; } // Height multipliers for format 1 (4:2:0). if (chroma_format_idc == 1) { frame_crop_top_offset *= 2; frame_crop_bottom_offset *= 2; } } // Subtract the crop for each dimension. sps.width -= (frame_crop_left_offset + frame_crop_right_offset); sps.height -= (frame_crop_top_offset + frame_crop_bottom_offset); return OptionalSps(sps); } } // namespace webrtc