/* * Copyright 2012 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "p2p/base/turn_server.h" #include #include // for std::tie #include #include "absl/algorithm/container.h" #include "api/packet_socket_factory.h" #include "api/transport/stun.h" #include "p2p/base/async_stun_tcp_socket.h" #include "rtc_base/bind.h" #include "rtc_base/byte_buffer.h" #include "rtc_base/checks.h" #include "rtc_base/helpers.h" #include "rtc_base/logging.h" #include "rtc_base/message_digest.h" #include "rtc_base/socket_adapters.h" #include "rtc_base/strings/string_builder.h" #include "rtc_base/thread.h" namespace cricket { // TODO(juberti): Move this all to a future turnmessage.h // static const int IPPROTO_UDP = 17; static const int kNonceTimeout = 60 * 60 * 1000; // 60 minutes static const int kDefaultAllocationTimeout = 10 * 60 * 1000; // 10 minutes static const int kPermissionTimeout = 5 * 60 * 1000; // 5 minutes static const int kChannelTimeout = 10 * 60 * 1000; // 10 minutes static const int kMinChannelNumber = 0x4000; static const int kMaxChannelNumber = 0x7FFF; static const size_t kNonceKeySize = 16; static const size_t kNonceSize = 48; static const size_t TURN_CHANNEL_HEADER_SIZE = 4U; // TODO(mallinath) - Move these to a common place. inline bool IsTurnChannelData(uint16_t msg_type) { // The first two bits of a channel data message are 0b01. return ((msg_type & 0xC000) == 0x4000); } // IDs used for posted messages for TurnServerAllocation. enum { MSG_ALLOCATION_TIMEOUT, }; // Encapsulates a TURN permission. // The object is created when a create permission request is received by an // allocation, and self-deletes when its lifetime timer expires. class TurnServerAllocation::Permission : public rtc::MessageHandlerAutoCleanup { public: Permission(rtc::Thread* thread, const rtc::IPAddress& peer); ~Permission() override; const rtc::IPAddress& peer() const { return peer_; } void Refresh(); sigslot::signal1 SignalDestroyed; private: void OnMessage(rtc::Message* msg) override; rtc::Thread* thread_; rtc::IPAddress peer_; }; // Encapsulates a TURN channel binding. // The object is created when a channel bind request is received by an // allocation, and self-deletes when its lifetime timer expires. class TurnServerAllocation::Channel : public rtc::MessageHandlerAutoCleanup { public: Channel(rtc::Thread* thread, int id, const rtc::SocketAddress& peer); ~Channel() override; int id() const { return id_; } const rtc::SocketAddress& peer() const { return peer_; } void Refresh(); sigslot::signal1 SignalDestroyed; private: void OnMessage(rtc::Message* msg) override; rtc::Thread* thread_; int id_; rtc::SocketAddress peer_; }; static bool InitResponse(const StunMessage* req, StunMessage* resp) { int resp_type = (req) ? GetStunSuccessResponseType(req->type()) : -1; if (resp_type == -1) return false; resp->SetType(resp_type); resp->SetTransactionID(req->transaction_id()); return true; } static bool InitErrorResponse(const StunMessage* req, int code, const std::string& reason, StunMessage* resp) { int resp_type = (req) ? GetStunErrorResponseType(req->type()) : -1; if (resp_type == -1) return false; resp->SetType(resp_type); resp->SetTransactionID(req->transaction_id()); resp->AddAttribute(std::make_unique( STUN_ATTR_ERROR_CODE, code, reason)); return true; } TurnServer::TurnServer(rtc::Thread* thread) : thread_(thread), nonce_key_(rtc::CreateRandomString(kNonceKeySize)), auth_hook_(NULL), redirect_hook_(NULL), enable_otu_nonce_(false) {} TurnServer::~TurnServer() { RTC_DCHECK(thread_checker_.IsCurrent()); for (InternalSocketMap::iterator it = server_sockets_.begin(); it != server_sockets_.end(); ++it) { rtc::AsyncPacketSocket* socket = it->first; delete socket; } for (ServerSocketMap::iterator it = server_listen_sockets_.begin(); it != server_listen_sockets_.end(); ++it) { rtc::AsyncSocket* socket = it->first; delete socket; } } void TurnServer::AddInternalSocket(rtc::AsyncPacketSocket* socket, ProtocolType proto) { RTC_DCHECK(thread_checker_.IsCurrent()); RTC_DCHECK(server_sockets_.end() == server_sockets_.find(socket)); server_sockets_[socket] = proto; socket->SignalReadPacket.connect(this, &TurnServer::OnInternalPacket); } void TurnServer::AddInternalServerSocket(rtc::AsyncSocket* socket, ProtocolType proto) { RTC_DCHECK(thread_checker_.IsCurrent()); RTC_DCHECK(server_listen_sockets_.end() == server_listen_sockets_.find(socket)); server_listen_sockets_[socket] = proto; socket->SignalReadEvent.connect(this, &TurnServer::OnNewInternalConnection); } void TurnServer::SetExternalSocketFactory( rtc::PacketSocketFactory* factory, const rtc::SocketAddress& external_addr) { RTC_DCHECK(thread_checker_.IsCurrent()); external_socket_factory_.reset(factory); external_addr_ = external_addr; } void TurnServer::OnNewInternalConnection(rtc::AsyncSocket* socket) { RTC_DCHECK(thread_checker_.IsCurrent()); RTC_DCHECK(server_listen_sockets_.find(socket) != server_listen_sockets_.end()); AcceptConnection(socket); } void TurnServer::AcceptConnection(rtc::AsyncSocket* server_socket) { RTC_DCHECK(thread_checker_.IsCurrent()); // Check if someone is trying to connect to us. rtc::SocketAddress accept_addr; rtc::AsyncSocket* accepted_socket = server_socket->Accept(&accept_addr); if (accepted_socket != NULL) { ProtocolType proto = server_listen_sockets_[server_socket]; cricket::AsyncStunTCPSocket* tcp_socket = new cricket::AsyncStunTCPSocket(accepted_socket, false); tcp_socket->SignalClose.connect(this, &TurnServer::OnInternalSocketClose); // Finally add the socket so it can start communicating with the client. AddInternalSocket(tcp_socket, proto); } } void TurnServer::OnInternalSocketClose(rtc::AsyncPacketSocket* socket, int err) { RTC_DCHECK(thread_checker_.IsCurrent()); DestroyInternalSocket(socket); } void TurnServer::OnInternalPacket(rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& addr, const int64_t& /* packet_time_us */) { RTC_DCHECK(thread_checker_.IsCurrent()); // Fail if the packet is too small to even contain a channel header. if (size < TURN_CHANNEL_HEADER_SIZE) { return; } InternalSocketMap::iterator iter = server_sockets_.find(socket); RTC_DCHECK(iter != server_sockets_.end()); TurnServerConnection conn(addr, iter->second, socket); uint16_t msg_type = rtc::GetBE16(data); if (!IsTurnChannelData(msg_type)) { // This is a STUN message. HandleStunMessage(&conn, data, size); } else { // This is a channel message; let the allocation handle it. TurnServerAllocation* allocation = FindAllocation(&conn); if (allocation) { allocation->HandleChannelData(data, size); } if (stun_message_observer_ != nullptr) { stun_message_observer_->ReceivedChannelData(data, size); } } } void TurnServer::HandleStunMessage(TurnServerConnection* conn, const char* data, size_t size) { RTC_DCHECK(thread_checker_.IsCurrent()); TurnMessage msg; rtc::ByteBufferReader buf(data, size); if (!msg.Read(&buf) || (buf.Length() > 0)) { RTC_LOG(LS_WARNING) << "Received invalid STUN message"; return; } if (stun_message_observer_ != nullptr) { stun_message_observer_->ReceivedMessage(&msg); } // If it's a STUN binding request, handle that specially. if (msg.type() == STUN_BINDING_REQUEST) { HandleBindingRequest(conn, &msg); return; } if (redirect_hook_ != NULL && msg.type() == STUN_ALLOCATE_REQUEST) { rtc::SocketAddress address; if (redirect_hook_->ShouldRedirect(conn->src(), &address)) { SendErrorResponseWithAlternateServer(conn, &msg, address); return; } } // Look up the key that we'll use to validate the M-I. If we have an // existing allocation, the key will already be cached. TurnServerAllocation* allocation = FindAllocation(conn); std::string key; if (!allocation) { GetKey(&msg, &key); } else { key = allocation->key(); } // Ensure the message is authorized; only needed for requests. if (IsStunRequestType(msg.type())) { if (!CheckAuthorization(conn, &msg, data, size, key)) { return; } } if (!allocation && msg.type() == STUN_ALLOCATE_REQUEST) { HandleAllocateRequest(conn, &msg, key); } else if (allocation && (msg.type() != STUN_ALLOCATE_REQUEST || msg.transaction_id() == allocation->transaction_id())) { // This is a non-allocate request, or a retransmit of an allocate. // Check that the username matches the previous username used. if (IsStunRequestType(msg.type()) && msg.GetByteString(STUN_ATTR_USERNAME)->GetString() != allocation->username()) { SendErrorResponse(conn, &msg, STUN_ERROR_WRONG_CREDENTIALS, STUN_ERROR_REASON_WRONG_CREDENTIALS); return; } allocation->HandleTurnMessage(&msg); } else { // Allocation mismatch. SendErrorResponse(conn, &msg, STUN_ERROR_ALLOCATION_MISMATCH, STUN_ERROR_REASON_ALLOCATION_MISMATCH); } } bool TurnServer::GetKey(const StunMessage* msg, std::string* key) { RTC_DCHECK(thread_checker_.IsCurrent()); const StunByteStringAttribute* username_attr = msg->GetByteString(STUN_ATTR_USERNAME); if (!username_attr) { return false; } std::string username = username_attr->GetString(); return (auth_hook_ != NULL && auth_hook_->GetKey(username, realm_, key)); } bool TurnServer::CheckAuthorization(TurnServerConnection* conn, const StunMessage* msg, const char* data, size_t size, const std::string& key) { RTC_DCHECK(thread_checker_.IsCurrent()); // RFC 5389, 10.2.2. RTC_DCHECK(IsStunRequestType(msg->type())); const StunByteStringAttribute* mi_attr = msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); const StunByteStringAttribute* username_attr = msg->GetByteString(STUN_ATTR_USERNAME); const StunByteStringAttribute* realm_attr = msg->GetByteString(STUN_ATTR_REALM); const StunByteStringAttribute* nonce_attr = msg->GetByteString(STUN_ATTR_NONCE); // Fail if no M-I. if (!mi_attr) { SendErrorResponseWithRealmAndNonce(conn, msg, STUN_ERROR_UNAUTHORIZED, STUN_ERROR_REASON_UNAUTHORIZED); return false; } // Fail if there is M-I but no username, nonce, or realm. if (!username_attr || !realm_attr || !nonce_attr) { SendErrorResponse(conn, msg, STUN_ERROR_BAD_REQUEST, STUN_ERROR_REASON_BAD_REQUEST); return false; } // Fail if bad nonce. if (!ValidateNonce(nonce_attr->GetString())) { SendErrorResponseWithRealmAndNonce(conn, msg, STUN_ERROR_STALE_NONCE, STUN_ERROR_REASON_STALE_NONCE); return false; } // Fail if bad username or M-I. // We need |data| and |size| for the call to ValidateMessageIntegrity. if (key.empty() || !StunMessage::ValidateMessageIntegrity(data, size, key)) { SendErrorResponseWithRealmAndNonce(conn, msg, STUN_ERROR_UNAUTHORIZED, STUN_ERROR_REASON_UNAUTHORIZED); return false; } // Fail if one-time-use nonce feature is enabled. TurnServerAllocation* allocation = FindAllocation(conn); if (enable_otu_nonce_ && allocation && allocation->last_nonce() == nonce_attr->GetString()) { SendErrorResponseWithRealmAndNonce(conn, msg, STUN_ERROR_STALE_NONCE, STUN_ERROR_REASON_STALE_NONCE); return false; } if (allocation) { allocation->set_last_nonce(nonce_attr->GetString()); } // Success. return true; } void TurnServer::HandleBindingRequest(TurnServerConnection* conn, const StunMessage* req) { RTC_DCHECK(thread_checker_.IsCurrent()); StunMessage response; InitResponse(req, &response); // Tell the user the address that we received their request from. auto mapped_addr_attr = std::make_unique( STUN_ATTR_XOR_MAPPED_ADDRESS, conn->src()); response.AddAttribute(std::move(mapped_addr_attr)); SendStun(conn, &response); } void TurnServer::HandleAllocateRequest(TurnServerConnection* conn, const TurnMessage* msg, const std::string& key) { RTC_DCHECK(thread_checker_.IsCurrent()); // Check the parameters in the request. const StunUInt32Attribute* transport_attr = msg->GetUInt32(STUN_ATTR_REQUESTED_TRANSPORT); if (!transport_attr) { SendErrorResponse(conn, msg, STUN_ERROR_BAD_REQUEST, STUN_ERROR_REASON_BAD_REQUEST); return; } // Only UDP is supported right now. int proto = transport_attr->value() >> 24; if (proto != IPPROTO_UDP) { SendErrorResponse(conn, msg, STUN_ERROR_UNSUPPORTED_PROTOCOL, STUN_ERROR_REASON_UNSUPPORTED_PROTOCOL); return; } // Create the allocation and let it send the success response. // If the actual socket allocation fails, send an internal error. TurnServerAllocation* alloc = CreateAllocation(conn, proto, key); if (alloc) { alloc->HandleTurnMessage(msg); } else { SendErrorResponse(conn, msg, STUN_ERROR_SERVER_ERROR, "Failed to allocate socket"); } } std::string TurnServer::GenerateNonce(int64_t now) const { RTC_DCHECK(thread_checker_.IsCurrent()); // Generate a nonce of the form hex(now + HMAC-MD5(nonce_key_, now)) std::string input(reinterpret_cast(&now), sizeof(now)); std::string nonce = rtc::hex_encode(input.c_str(), input.size()); nonce += rtc::ComputeHmac(rtc::DIGEST_MD5, nonce_key_, input); RTC_DCHECK(nonce.size() == kNonceSize); return nonce; } bool TurnServer::ValidateNonce(const std::string& nonce) const { RTC_DCHECK(thread_checker_.IsCurrent()); // Check the size. if (nonce.size() != kNonceSize) { return false; } // Decode the timestamp. int64_t then; char* p = reinterpret_cast(&then); size_t len = rtc::hex_decode(p, sizeof(then), nonce.substr(0, sizeof(then) * 2)); if (len != sizeof(then)) { return false; } // Verify the HMAC. if (nonce.substr(sizeof(then) * 2) != rtc::ComputeHmac(rtc::DIGEST_MD5, nonce_key_, std::string(p, sizeof(then)))) { return false; } // Validate the timestamp. return rtc::TimeMillis() - then < kNonceTimeout; } TurnServerAllocation* TurnServer::FindAllocation(TurnServerConnection* conn) { RTC_DCHECK(thread_checker_.IsCurrent()); AllocationMap::const_iterator it = allocations_.find(*conn); return (it != allocations_.end()) ? it->second.get() : nullptr; } TurnServerAllocation* TurnServer::CreateAllocation(TurnServerConnection* conn, int proto, const std::string& key) { RTC_DCHECK(thread_checker_.IsCurrent()); rtc::AsyncPacketSocket* external_socket = (external_socket_factory_) ? external_socket_factory_->CreateUdpSocket(external_addr_, 0, 0) : NULL; if (!external_socket) { return NULL; } // The Allocation takes ownership of the socket. TurnServerAllocation* allocation = new TurnServerAllocation(this, thread_, *conn, external_socket, key); allocation->SignalDestroyed.connect(this, &TurnServer::OnAllocationDestroyed); allocations_[*conn].reset(allocation); return allocation; } void TurnServer::SendErrorResponse(TurnServerConnection* conn, const StunMessage* req, int code, const std::string& reason) { RTC_DCHECK(thread_checker_.IsCurrent()); TurnMessage resp; InitErrorResponse(req, code, reason, &resp); RTC_LOG(LS_INFO) << "Sending error response, type=" << resp.type() << ", code=" << code << ", reason=" << reason; SendStun(conn, &resp); } void TurnServer::SendErrorResponseWithRealmAndNonce(TurnServerConnection* conn, const StunMessage* msg, int code, const std::string& reason) { RTC_DCHECK(thread_checker_.IsCurrent()); TurnMessage resp; InitErrorResponse(msg, code, reason, &resp); int64_t timestamp = rtc::TimeMillis(); if (ts_for_next_nonce_) { timestamp = ts_for_next_nonce_; ts_for_next_nonce_ = 0; } resp.AddAttribute(std::make_unique( STUN_ATTR_NONCE, GenerateNonce(timestamp))); resp.AddAttribute( std::make_unique(STUN_ATTR_REALM, realm_)); SendStun(conn, &resp); } void TurnServer::SendErrorResponseWithAlternateServer( TurnServerConnection* conn, const StunMessage* msg, const rtc::SocketAddress& addr) { RTC_DCHECK(thread_checker_.IsCurrent()); TurnMessage resp; InitErrorResponse(msg, STUN_ERROR_TRY_ALTERNATE, STUN_ERROR_REASON_TRY_ALTERNATE_SERVER, &resp); resp.AddAttribute( std::make_unique(STUN_ATTR_ALTERNATE_SERVER, addr)); SendStun(conn, &resp); } void TurnServer::SendStun(TurnServerConnection* conn, StunMessage* msg) { RTC_DCHECK(thread_checker_.IsCurrent()); rtc::ByteBufferWriter buf; // Add a SOFTWARE attribute if one is set. if (!software_.empty()) { msg->AddAttribute(std::make_unique( STUN_ATTR_SOFTWARE, software_)); } msg->Write(&buf); Send(conn, buf); } void TurnServer::Send(TurnServerConnection* conn, const rtc::ByteBufferWriter& buf) { RTC_DCHECK(thread_checker_.IsCurrent()); rtc::PacketOptions options; conn->socket()->SendTo(buf.Data(), buf.Length(), conn->src(), options); } void TurnServer::OnAllocationDestroyed(TurnServerAllocation* allocation) { RTC_DCHECK(thread_checker_.IsCurrent()); // Removing the internal socket if the connection is not udp. rtc::AsyncPacketSocket* socket = allocation->conn()->socket(); InternalSocketMap::iterator iter = server_sockets_.find(socket); // Skip if the socket serving this allocation is UDP, as this will be shared // by all allocations. // Note: We may not find a socket if it's a TCP socket that was closed, and // the allocation is only now timing out. if (iter != server_sockets_.end() && iter->second != cricket::PROTO_UDP) { DestroyInternalSocket(socket); } AllocationMap::iterator it = allocations_.find(*(allocation->conn())); if (it != allocations_.end()) { it->second.release(); allocations_.erase(it); } } void TurnServer::DestroyInternalSocket(rtc::AsyncPacketSocket* socket) { RTC_DCHECK(thread_checker_.IsCurrent()); InternalSocketMap::iterator iter = server_sockets_.find(socket); if (iter != server_sockets_.end()) { rtc::AsyncPacketSocket* socket = iter->first; socket->SignalReadPacket.disconnect(this); server_sockets_.erase(iter); // We must destroy the socket async to avoid invalidating the sigslot // callback list iterator inside a sigslot callback. (In other words, // deleting an object from within a callback from that object). sockets_to_delete_.push_back( std::unique_ptr(socket)); invoker_.AsyncInvoke(RTC_FROM_HERE, rtc::Thread::Current(), rtc::Bind(&TurnServer::FreeSockets, this)); } } void TurnServer::FreeSockets() { RTC_DCHECK(thread_checker_.IsCurrent()); sockets_to_delete_.clear(); } TurnServerConnection::TurnServerConnection(const rtc::SocketAddress& src, ProtocolType proto, rtc::AsyncPacketSocket* socket) : src_(src), dst_(socket->GetRemoteAddress()), proto_(proto), socket_(socket) {} bool TurnServerConnection::operator==(const TurnServerConnection& c) const { return src_ == c.src_ && dst_ == c.dst_ && proto_ == c.proto_; } bool TurnServerConnection::operator<(const TurnServerConnection& c) const { return std::tie(src_, dst_, proto_) < std::tie(c.src_, c.dst_, c.proto_); } std::string TurnServerConnection::ToString() const { const char* const kProtos[] = {"unknown", "udp", "tcp", "ssltcp"}; rtc::StringBuilder ost; ost << src_.ToSensitiveString() << "-" << dst_.ToSensitiveString() << ":" << kProtos[proto_]; return ost.Release(); } TurnServerAllocation::TurnServerAllocation(TurnServer* server, rtc::Thread* thread, const TurnServerConnection& conn, rtc::AsyncPacketSocket* socket, const std::string& key) : server_(server), thread_(thread), conn_(conn), external_socket_(socket), key_(key) { external_socket_->SignalReadPacket.connect( this, &TurnServerAllocation::OnExternalPacket); } TurnServerAllocation::~TurnServerAllocation() { for (ChannelList::iterator it = channels_.begin(); it != channels_.end(); ++it) { delete *it; } for (PermissionList::iterator it = perms_.begin(); it != perms_.end(); ++it) { delete *it; } thread_->Clear(this, MSG_ALLOCATION_TIMEOUT); RTC_LOG(LS_INFO) << ToString() << ": Allocation destroyed"; } std::string TurnServerAllocation::ToString() const { rtc::StringBuilder ost; ost << "Alloc[" << conn_.ToString() << "]"; return ost.Release(); } void TurnServerAllocation::HandleTurnMessage(const TurnMessage* msg) { RTC_DCHECK(msg != NULL); switch (msg->type()) { case STUN_ALLOCATE_REQUEST: HandleAllocateRequest(msg); break; case TURN_REFRESH_REQUEST: HandleRefreshRequest(msg); break; case TURN_SEND_INDICATION: HandleSendIndication(msg); break; case TURN_CREATE_PERMISSION_REQUEST: HandleCreatePermissionRequest(msg); break; case TURN_CHANNEL_BIND_REQUEST: HandleChannelBindRequest(msg); break; default: // Not sure what to do with this, just eat it. RTC_LOG(LS_WARNING) << ToString() << ": Invalid TURN message type received: " << msg->type(); } } void TurnServerAllocation::HandleAllocateRequest(const TurnMessage* msg) { // Copy the important info from the allocate request. transaction_id_ = msg->transaction_id(); const StunByteStringAttribute* username_attr = msg->GetByteString(STUN_ATTR_USERNAME); RTC_DCHECK(username_attr != NULL); username_ = username_attr->GetString(); const StunByteStringAttribute* origin_attr = msg->GetByteString(STUN_ATTR_ORIGIN); if (origin_attr) { origin_ = origin_attr->GetString(); } // Figure out the lifetime and start the allocation timer. int lifetime_secs = ComputeLifetime(msg); thread_->PostDelayed(RTC_FROM_HERE, lifetime_secs * 1000, this, MSG_ALLOCATION_TIMEOUT); RTC_LOG(LS_INFO) << ToString() << ": Created allocation with lifetime=" << lifetime_secs; // We've already validated all the important bits; just send a response here. TurnMessage response; InitResponse(msg, &response); auto mapped_addr_attr = std::make_unique( STUN_ATTR_XOR_MAPPED_ADDRESS, conn_.src()); auto relayed_addr_attr = std::make_unique( STUN_ATTR_XOR_RELAYED_ADDRESS, external_socket_->GetLocalAddress()); auto lifetime_attr = std::make_unique(STUN_ATTR_LIFETIME, lifetime_secs); response.AddAttribute(std::move(mapped_addr_attr)); response.AddAttribute(std::move(relayed_addr_attr)); response.AddAttribute(std::move(lifetime_attr)); SendResponse(&response); } void TurnServerAllocation::HandleRefreshRequest(const TurnMessage* msg) { // Figure out the new lifetime. int lifetime_secs = ComputeLifetime(msg); // Reset the expiration timer. thread_->Clear(this, MSG_ALLOCATION_TIMEOUT); thread_->PostDelayed(RTC_FROM_HERE, lifetime_secs * 1000, this, MSG_ALLOCATION_TIMEOUT); RTC_LOG(LS_INFO) << ToString() << ": Refreshed allocation, lifetime=" << lifetime_secs; // Send a success response with a LIFETIME attribute. TurnMessage response; InitResponse(msg, &response); auto lifetime_attr = std::make_unique(STUN_ATTR_LIFETIME, lifetime_secs); response.AddAttribute(std::move(lifetime_attr)); SendResponse(&response); } void TurnServerAllocation::HandleSendIndication(const TurnMessage* msg) { // Check mandatory attributes. const StunByteStringAttribute* data_attr = msg->GetByteString(STUN_ATTR_DATA); const StunAddressAttribute* peer_attr = msg->GetAddress(STUN_ATTR_XOR_PEER_ADDRESS); if (!data_attr || !peer_attr) { RTC_LOG(LS_WARNING) << ToString() << ": Received invalid send indication"; return; } // If a permission exists, send the data on to the peer. if (HasPermission(peer_attr->GetAddress().ipaddr())) { SendExternal(data_attr->bytes(), data_attr->length(), peer_attr->GetAddress()); } else { RTC_LOG(LS_WARNING) << ToString() << ": Received send indication without permission" " peer=" << peer_attr->GetAddress().ToSensitiveString(); } } void TurnServerAllocation::HandleCreatePermissionRequest( const TurnMessage* msg) { // Check mandatory attributes. const StunAddressAttribute* peer_attr = msg->GetAddress(STUN_ATTR_XOR_PEER_ADDRESS); if (!peer_attr) { SendBadRequestResponse(msg); return; } if (server_->reject_private_addresses_ && rtc::IPIsPrivate(peer_attr->GetAddress().ipaddr())) { SendErrorResponse(msg, STUN_ERROR_FORBIDDEN, STUN_ERROR_REASON_FORBIDDEN); return; } // Add this permission. AddPermission(peer_attr->GetAddress().ipaddr()); RTC_LOG(LS_INFO) << ToString() << ": Created permission, peer=" << peer_attr->GetAddress().ToSensitiveString(); // Send a success response. TurnMessage response; InitResponse(msg, &response); SendResponse(&response); } void TurnServerAllocation::HandleChannelBindRequest(const TurnMessage* msg) { // Check mandatory attributes. const StunUInt32Attribute* channel_attr = msg->GetUInt32(STUN_ATTR_CHANNEL_NUMBER); const StunAddressAttribute* peer_attr = msg->GetAddress(STUN_ATTR_XOR_PEER_ADDRESS); if (!channel_attr || !peer_attr) { SendBadRequestResponse(msg); return; } // Check that channel id is valid. int channel_id = channel_attr->value() >> 16; if (channel_id < kMinChannelNumber || channel_id > kMaxChannelNumber) { SendBadRequestResponse(msg); return; } // Check that this channel id isn't bound to another transport address, and // that this transport address isn't bound to another channel id. Channel* channel1 = FindChannel(channel_id); Channel* channel2 = FindChannel(peer_attr->GetAddress()); if (channel1 != channel2) { SendBadRequestResponse(msg); return; } // Add or refresh this channel. if (!channel1) { channel1 = new Channel(thread_, channel_id, peer_attr->GetAddress()); channel1->SignalDestroyed.connect( this, &TurnServerAllocation::OnChannelDestroyed); channels_.push_back(channel1); } else { channel1->Refresh(); } // Channel binds also refresh permissions. AddPermission(peer_attr->GetAddress().ipaddr()); RTC_LOG(LS_INFO) << ToString() << ": Bound channel, id=" << channel_id << ", peer=" << peer_attr->GetAddress().ToSensitiveString(); // Send a success response. TurnMessage response; InitResponse(msg, &response); SendResponse(&response); } void TurnServerAllocation::HandleChannelData(const char* data, size_t size) { // Extract the channel number from the data. uint16_t channel_id = rtc::GetBE16(data); Channel* channel = FindChannel(channel_id); if (channel) { // Send the data to the peer address. SendExternal(data + TURN_CHANNEL_HEADER_SIZE, size - TURN_CHANNEL_HEADER_SIZE, channel->peer()); } else { RTC_LOG(LS_WARNING) << ToString() << ": Received channel data for invalid channel, id=" << channel_id; } } void TurnServerAllocation::OnExternalPacket( rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& addr, const int64_t& /* packet_time_us */) { RTC_DCHECK(external_socket_.get() == socket); Channel* channel = FindChannel(addr); if (channel) { // There is a channel bound to this address. Send as a channel message. rtc::ByteBufferWriter buf; buf.WriteUInt16(channel->id()); buf.WriteUInt16(static_cast(size)); buf.WriteBytes(data, size); server_->Send(&conn_, buf); } else if (!server_->enable_permission_checks_ || HasPermission(addr.ipaddr())) { // No channel, but a permission exists. Send as a data indication. TurnMessage msg; msg.SetType(TURN_DATA_INDICATION); msg.SetTransactionID(rtc::CreateRandomString(kStunTransactionIdLength)); msg.AddAttribute(std::make_unique( STUN_ATTR_XOR_PEER_ADDRESS, addr)); msg.AddAttribute( std::make_unique(STUN_ATTR_DATA, data, size)); server_->SendStun(&conn_, &msg); } else { RTC_LOG(LS_WARNING) << ToString() << ": Received external packet without permission, peer=" << addr.ToSensitiveString(); } } int TurnServerAllocation::ComputeLifetime(const TurnMessage* msg) { // Return the smaller of our default lifetime and the requested lifetime. int lifetime = kDefaultAllocationTimeout / 1000; // convert to seconds const StunUInt32Attribute* lifetime_attr = msg->GetUInt32(STUN_ATTR_LIFETIME); if (lifetime_attr && static_cast(lifetime_attr->value()) < lifetime) { lifetime = static_cast(lifetime_attr->value()); } return lifetime; } bool TurnServerAllocation::HasPermission(const rtc::IPAddress& addr) { return (FindPermission(addr) != NULL); } void TurnServerAllocation::AddPermission(const rtc::IPAddress& addr) { Permission* perm = FindPermission(addr); if (!perm) { perm = new Permission(thread_, addr); perm->SignalDestroyed.connect(this, &TurnServerAllocation::OnPermissionDestroyed); perms_.push_back(perm); } else { perm->Refresh(); } } TurnServerAllocation::Permission* TurnServerAllocation::FindPermission( const rtc::IPAddress& addr) const { for (PermissionList::const_iterator it = perms_.begin(); it != perms_.end(); ++it) { if ((*it)->peer() == addr) return *it; } return NULL; } TurnServerAllocation::Channel* TurnServerAllocation::FindChannel( int channel_id) const { for (ChannelList::const_iterator it = channels_.begin(); it != channels_.end(); ++it) { if ((*it)->id() == channel_id) return *it; } return NULL; } TurnServerAllocation::Channel* TurnServerAllocation::FindChannel( const rtc::SocketAddress& addr) const { for (ChannelList::const_iterator it = channels_.begin(); it != channels_.end(); ++it) { if ((*it)->peer() == addr) return *it; } return NULL; } void TurnServerAllocation::SendResponse(TurnMessage* msg) { // Success responses always have M-I. msg->AddMessageIntegrity(key_); server_->SendStun(&conn_, msg); } void TurnServerAllocation::SendBadRequestResponse(const TurnMessage* req) { SendErrorResponse(req, STUN_ERROR_BAD_REQUEST, STUN_ERROR_REASON_BAD_REQUEST); } void TurnServerAllocation::SendErrorResponse(const TurnMessage* req, int code, const std::string& reason) { server_->SendErrorResponse(&conn_, req, code, reason); } void TurnServerAllocation::SendExternal(const void* data, size_t size, const rtc::SocketAddress& peer) { rtc::PacketOptions options; external_socket_->SendTo(data, size, peer, options); } void TurnServerAllocation::OnMessage(rtc::Message* msg) { RTC_DCHECK(msg->message_id == MSG_ALLOCATION_TIMEOUT); SignalDestroyed(this); delete this; } void TurnServerAllocation::OnPermissionDestroyed(Permission* perm) { auto it = absl::c_find(perms_, perm); RTC_DCHECK(it != perms_.end()); perms_.erase(it); } void TurnServerAllocation::OnChannelDestroyed(Channel* channel) { auto it = absl::c_find(channels_, channel); RTC_DCHECK(it != channels_.end()); channels_.erase(it); } TurnServerAllocation::Permission::Permission(rtc::Thread* thread, const rtc::IPAddress& peer) : thread_(thread), peer_(peer) { Refresh(); } TurnServerAllocation::Permission::~Permission() { thread_->Clear(this, MSG_ALLOCATION_TIMEOUT); } void TurnServerAllocation::Permission::Refresh() { thread_->Clear(this, MSG_ALLOCATION_TIMEOUT); thread_->PostDelayed(RTC_FROM_HERE, kPermissionTimeout, this, MSG_ALLOCATION_TIMEOUT); } void TurnServerAllocation::Permission::OnMessage(rtc::Message* msg) { RTC_DCHECK(msg->message_id == MSG_ALLOCATION_TIMEOUT); SignalDestroyed(this); delete this; } TurnServerAllocation::Channel::Channel(rtc::Thread* thread, int id, const rtc::SocketAddress& peer) : thread_(thread), id_(id), peer_(peer) { Refresh(); } TurnServerAllocation::Channel::~Channel() { thread_->Clear(this, MSG_ALLOCATION_TIMEOUT); } void TurnServerAllocation::Channel::Refresh() { thread_->Clear(this, MSG_ALLOCATION_TIMEOUT); thread_->PostDelayed(RTC_FROM_HERE, kChannelTimeout, this, MSG_ALLOCATION_TIMEOUT); } void TurnServerAllocation::Channel::OnMessage(rtc::Message* msg) { RTC_DCHECK(msg->message_id == MSG_ALLOCATION_TIMEOUT); SignalDestroyed(this); delete this; } } // namespace cricket