/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #if defined(WEBRTC_POSIX) #include #include #ifdef OPENBSD #include #endif #ifndef __native_client__ #include #endif #include #endif #include "rtc_base/byte_order.h" #include "rtc_base/ip_address.h" #include "rtc_base/net_helpers.h" #include "rtc_base/string_utils.h" #if defined(WEBRTC_WIN) #include "rtc_base/win32.h" #endif // WEBRTC_WIN namespace rtc { // Prefixes used for categorizing IPv6 addresses. static const in6_addr kV4MappedPrefix = { {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 0}}}; static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}}; static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}}; static const in6_addr kV4CompatibilityPrefix = {{{0}}}; static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}}; static const in6_addr kPrivateNetworkPrefix = {{{0xFD}}}; static bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length); static in_addr ExtractMappedAddress(const in6_addr& addr); uint32_t IPAddress::v4AddressAsHostOrderInteger() const { if (family_ == AF_INET) { return NetworkToHost32(u_.ip4.s_addr); } else { return 0; } } int IPAddress::overhead() const { switch (family_) { case AF_INET: // IPv4 return 20; case AF_INET6: // IPv6 return 40; default: return 0; } } bool IPAddress::IsNil() const { return IPIsUnspec(*this); } size_t IPAddress::Size() const { switch (family_) { case AF_INET: return sizeof(in_addr); case AF_INET6: return sizeof(in6_addr); } return 0; } bool IPAddress::operator==(const IPAddress& other) const { if (family_ != other.family_) { return false; } if (family_ == AF_INET) { return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0; } if (family_ == AF_INET6) { return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0; } return family_ == AF_UNSPEC; } bool IPAddress::operator!=(const IPAddress& other) const { return !((*this) == other); } bool IPAddress::operator>(const IPAddress& other) const { return (*this) != other && !((*this) < other); } bool IPAddress::operator<(const IPAddress& other) const { // IPv4 is 'less than' IPv6 if (family_ != other.family_) { if (family_ == AF_UNSPEC) { return true; } if (family_ == AF_INET && other.family_ == AF_INET6) { return true; } return false; } // Comparing addresses of the same family. switch (family_) { case AF_INET: { return NetworkToHost32(u_.ip4.s_addr) < NetworkToHost32(other.u_.ip4.s_addr); } case AF_INET6: { return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0; } } // Catches AF_UNSPEC and invalid addresses. return false; } in6_addr IPAddress::ipv6_address() const { return u_.ip6; } in_addr IPAddress::ipv4_address() const { return u_.ip4; } std::string IPAddress::ToString() const { if (family_ != AF_INET && family_ != AF_INET6) { return std::string(); } char buf[INET6_ADDRSTRLEN] = {0}; const void* src = &u_.ip4; if (family_ == AF_INET6) { src = &u_.ip6; } if (!rtc::inet_ntop(family_, src, buf, sizeof(buf))) { return std::string(); } return std::string(buf); } std::string IPAddress::ToSensitiveString() const { #if !defined(NDEBUG) // Return non-stripped in debug. return ToString(); #else switch (family_) { case AF_INET: { std::string address = ToString(); size_t find_pos = address.rfind('.'); if (find_pos == std::string::npos) return std::string(); address.resize(find_pos); address += ".x"; return address; } case AF_INET6: { std::string result; result.resize(INET6_ADDRSTRLEN); in6_addr addr = ipv6_address(); size_t len = snprintf(&(result[0]), result.size(), "%x:%x:%x:x:x:x:x:x", (addr.s6_addr[0] << 8) + addr.s6_addr[1], (addr.s6_addr[2] << 8) + addr.s6_addr[3], (addr.s6_addr[4] << 8) + addr.s6_addr[5]); result.resize(len); return result; } } return std::string(); #endif } IPAddress IPAddress::Normalized() const { if (family_ != AF_INET6) { return *this; } if (!IPIsV4Mapped(*this)) { return *this; } in_addr addr = ExtractMappedAddress(u_.ip6); return IPAddress(addr); } IPAddress IPAddress::AsIPv6Address() const { if (family_ != AF_INET) { return *this; } in6_addr v6addr = kV4MappedPrefix; ::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr)); return IPAddress(v6addr); } bool InterfaceAddress::operator==(const InterfaceAddress& other) const { return ipv6_flags_ == other.ipv6_flags() && static_cast(*this) == other; } bool InterfaceAddress::operator!=(const InterfaceAddress& other) const { return !((*this) == other); } const InterfaceAddress& InterfaceAddress::operator=( const InterfaceAddress& other) { ipv6_flags_ = other.ipv6_flags_; static_cast(*this) = other; return *this; } std::string InterfaceAddress::ToString() const { std::string result = IPAddress::ToString(); if (family() == AF_INET6) result += "|flags:0x" + rtc::ToHex(ipv6_flags()); return result; } static bool IPIsPrivateNetworkV4(const IPAddress& ip) { uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger(); return ((ip_in_host_order >> 24) == 10) || ((ip_in_host_order >> 20) == ((172 << 4) | 1)) || ((ip_in_host_order >> 16) == ((192 << 8) | 168)); } static bool IPIsPrivateNetworkV6(const IPAddress& ip) { return IPIsHelper(ip, kPrivateNetworkPrefix, 8); } bool IPIsPrivateNetwork(const IPAddress& ip) { switch (ip.family()) { case AF_INET: { return IPIsPrivateNetworkV4(ip); } case AF_INET6: { return IPIsPrivateNetworkV6(ip); } } return false; } static bool IPIsSharedNetworkV4(const IPAddress& ip) { uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger(); return (ip_in_host_order >> 22) == ((100 << 2) | 1); } bool IPIsSharedNetwork(const IPAddress& ip) { if (ip.family() == AF_INET) { return IPIsSharedNetworkV4(ip); } return false; } in_addr ExtractMappedAddress(const in6_addr& in6) { in_addr ipv4; ::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr)); return ipv4; } bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) { if (!info || !info->ai_addr) { return false; } if (info->ai_addr->sa_family == AF_INET) { sockaddr_in* addr = reinterpret_cast(info->ai_addr); *out = IPAddress(addr->sin_addr); return true; } else if (info->ai_addr->sa_family == AF_INET6) { sockaddr_in6* addr = reinterpret_cast(info->ai_addr); *out = IPAddress(addr->sin6_addr); return true; } return false; } bool IPFromString(const std::string& str, IPAddress* out) { if (!out) { return false; } in_addr addr; if (rtc::inet_pton(AF_INET, str.c_str(), &addr) == 0) { in6_addr addr6; if (rtc::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) { *out = IPAddress(); return false; } *out = IPAddress(addr6); } else { *out = IPAddress(addr); } return true; } bool IPFromString(const std::string& str, int flags, InterfaceAddress* out) { IPAddress ip; if (!IPFromString(str, &ip)) { return false; } *out = InterfaceAddress(ip, flags); return true; } bool IPIsAny(const IPAddress& ip) { switch (ip.family()) { case AF_INET: return ip == IPAddress(INADDR_ANY); case AF_INET6: return ip == IPAddress(in6addr_any) || ip == IPAddress(kV4MappedPrefix); case AF_UNSPEC: return false; } return false; } static bool IPIsLoopbackV4(const IPAddress& ip) { uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger(); return ((ip_in_host_order >> 24) == 127); } static bool IPIsLoopbackV6(const IPAddress& ip) { return ip == IPAddress(in6addr_loopback); } bool IPIsLoopback(const IPAddress& ip) { switch (ip.family()) { case AF_INET: { return IPIsLoopbackV4(ip); } case AF_INET6: { return IPIsLoopbackV6(ip); } } return false; } bool IPIsPrivate(const IPAddress& ip) { return IPIsLinkLocal(ip) || IPIsLoopback(ip) || IPIsPrivateNetwork(ip) || IPIsSharedNetwork(ip); } bool IPIsUnspec(const IPAddress& ip) { return ip.family() == AF_UNSPEC; } size_t HashIP(const IPAddress& ip) { switch (ip.family()) { case AF_INET: { return ip.ipv4_address().s_addr; } case AF_INET6: { in6_addr v6addr = ip.ipv6_address(); const uint32_t* v6_as_ints = reinterpret_cast(&v6addr.s6_addr); return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3]; } } return 0; } IPAddress TruncateIP(const IPAddress& ip, int length) { if (length < 0) { return IPAddress(); } if (ip.family() == AF_INET) { if (length > 31) { return ip; } if (length == 0) { return IPAddress(INADDR_ANY); } int mask = (0xFFFFFFFF << (32 - length)); uint32_t host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr); in_addr masked; masked.s_addr = HostToNetwork32(host_order_ip & mask); return IPAddress(masked); } else if (ip.family() == AF_INET6) { if (length > 127) { return ip; } if (length == 0) { return IPAddress(in6addr_any); } in6_addr v6addr = ip.ipv6_address(); int position = length / 32; int inner_length = 32 - (length - (position * 32)); // Note: 64bit mask constant needed to allow possible 32-bit left shift. uint32_t inner_mask = 0xFFFFFFFFLL << inner_length; uint32_t* v6_as_ints = reinterpret_cast(&v6addr.s6_addr); for (int i = 0; i < 4; ++i) { if (i == position) { uint32_t host_order_inner = NetworkToHost32(v6_as_ints[i]); v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask); } else if (i > position) { v6_as_ints[i] = 0; } } return IPAddress(v6addr); } return IPAddress(); } int CountIPMaskBits(const IPAddress& mask) { uint32_t word_to_count = 0; int bits = 0; switch (mask.family()) { case AF_INET: { word_to_count = NetworkToHost32(mask.ipv4_address().s_addr); break; } case AF_INET6: { in6_addr v6addr = mask.ipv6_address(); const uint32_t* v6_as_ints = reinterpret_cast(&v6addr.s6_addr); int i = 0; for (; i < 4; ++i) { if (v6_as_ints[i] != 0xFFFFFFFF) { break; } } if (i < 4) { word_to_count = NetworkToHost32(v6_as_ints[i]); } bits = (i * 32); break; } default: { return 0; } } if (word_to_count == 0) { return bits; } // Public domain bit-twiddling hack from: // http://graphics.stanford.edu/~seander/bithacks.html // Counts the trailing 0s in the word. unsigned int zeroes = 32; // This could also be written word_to_count &= -word_to_count, but // MSVC emits warning C4146 when negating an unsigned number. word_to_count &= ~word_to_count + 1; // Isolate lowest set bit. if (word_to_count) zeroes--; if (word_to_count & 0x0000FFFF) zeroes -= 16; if (word_to_count & 0x00FF00FF) zeroes -= 8; if (word_to_count & 0x0F0F0F0F) zeroes -= 4; if (word_to_count & 0x33333333) zeroes -= 2; if (word_to_count & 0x55555555) zeroes -= 1; return bits + (32 - zeroes); } bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) { // Helper method for checking IP prefix matches (but only on whole byte // lengths). Length is in bits. in6_addr addr = ip.ipv6_address(); return ::memcmp(&addr, &tomatch, (length >> 3)) == 0; } bool IPIs6Bone(const IPAddress& ip) { return IPIsHelper(ip, k6BonePrefix, 16); } bool IPIs6To4(const IPAddress& ip) { return IPIsHelper(ip, k6To4Prefix, 16); } static bool IPIsLinkLocalV4(const IPAddress& ip) { uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger(); return ((ip_in_host_order >> 16) == ((169 << 8) | 254)); } static bool IPIsLinkLocalV6(const IPAddress& ip) { // Can't use the helper because the prefix is 10 bits. in6_addr addr = ip.ipv6_address(); return (addr.s6_addr[0] == 0xFE) && ((addr.s6_addr[1] & 0xC0) == 0x80); } bool IPIsLinkLocal(const IPAddress& ip) { switch (ip.family()) { case AF_INET: { return IPIsLinkLocalV4(ip); } case AF_INET6: { return IPIsLinkLocalV6(ip); } } return false; } // According to http://www.ietf.org/rfc/rfc2373.txt, Appendix A, page 19. An // address which contains MAC will have its 11th and 12th bytes as FF:FE as well // as the U/L bit as 1. bool IPIsMacBased(const IPAddress& ip) { in6_addr addr = ip.ipv6_address(); return ((addr.s6_addr[8] & 0x02) && addr.s6_addr[11] == 0xFF && addr.s6_addr[12] == 0xFE); } bool IPIsSiteLocal(const IPAddress& ip) { // Can't use the helper because the prefix is 10 bits. in6_addr addr = ip.ipv6_address(); return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0; } bool IPIsULA(const IPAddress& ip) { // Can't use the helper because the prefix is 7 bits. in6_addr addr = ip.ipv6_address(); return (addr.s6_addr[0] & 0xFE) == 0xFC; } bool IPIsTeredo(const IPAddress& ip) { return IPIsHelper(ip, kTeredoPrefix, 32); } bool IPIsV4Compatibility(const IPAddress& ip) { return IPIsHelper(ip, kV4CompatibilityPrefix, 96); } bool IPIsV4Mapped(const IPAddress& ip) { return IPIsHelper(ip, kV4MappedPrefix, 96); } int IPAddressPrecedence(const IPAddress& ip) { // Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo. if (ip.family() == AF_INET) { return 30; } else if (ip.family() == AF_INET6) { if (IPIsLoopback(ip)) { return 60; } else if (IPIsULA(ip)) { return 50; } else if (IPIsV4Mapped(ip)) { return 30; } else if (IPIs6To4(ip)) { return 20; } else if (IPIsTeredo(ip)) { return 10; } else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) { return 1; } else { // A 'normal' IPv6 address. return 40; } } return 0; } IPAddress GetLoopbackIP(int family) { if (family == AF_INET) { return rtc::IPAddress(INADDR_LOOPBACK); } if (family == AF_INET6) { return rtc::IPAddress(in6addr_loopback); } return rtc::IPAddress(); } IPAddress GetAnyIP(int family) { if (family == AF_INET) { return rtc::IPAddress(INADDR_ANY); } if (family == AF_INET6) { return rtc::IPAddress(in6addr_any); } return rtc::IPAddress(); } } // namespace rtc