/* * Copyright 2018 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/task_queue_stdlib.h" #include #include #include #include #include #include #include "absl/strings/string_view.h" #include "api/task_queue/queued_task.h" #include "api/task_queue/task_queue_base.h" #include "rtc_base/checks.h" #include "rtc_base/event.h" #include "rtc_base/logging.h" #include "rtc_base/platform_thread.h" #include "rtc_base/synchronization/mutex.h" #include "rtc_base/thread_annotations.h" #include "rtc_base/time_utils.h" namespace webrtc { namespace { rtc::ThreadPriority TaskQueuePriorityToThreadPriority( TaskQueueFactory::Priority priority) { switch (priority) { case TaskQueueFactory::Priority::HIGH: return rtc::kRealtimePriority; case TaskQueueFactory::Priority::LOW: return rtc::kLowPriority; case TaskQueueFactory::Priority::NORMAL: return rtc::kNormalPriority; default: RTC_NOTREACHED(); return rtc::kNormalPriority; } } class TaskQueueStdlib final : public TaskQueueBase { public: TaskQueueStdlib(absl::string_view queue_name, rtc::ThreadPriority priority); ~TaskQueueStdlib() override = default; void Delete() override; void PostTask(std::unique_ptr task) override; void PostDelayedTask(std::unique_ptr task, uint32_t milliseconds) override; private: using OrderId = uint64_t; struct DelayedEntryTimeout { int64_t next_fire_at_ms_{}; OrderId order_{}; bool operator<(const DelayedEntryTimeout& o) const { return std::tie(next_fire_at_ms_, order_) < std::tie(o.next_fire_at_ms_, o.order_); } }; struct NextTask { bool final_task_{false}; std::unique_ptr run_task_; int64_t sleep_time_ms_{}; }; NextTask GetNextTask(); static void ThreadMain(void* context); void ProcessTasks(); void NotifyWake(); // Indicates if the thread has started. rtc::Event started_; // Indicates if the thread has stopped. rtc::Event stopped_; // Signaled whenever a new task is pending. rtc::Event flag_notify_; // Contains the active worker thread assigned to processing // tasks (including delayed tasks). rtc::PlatformThread thread_; Mutex pending_lock_; // Indicates if the worker thread needs to shutdown now. bool thread_should_quit_ RTC_GUARDED_BY(pending_lock_){false}; // Holds the next order to use for the next task to be // put into one of the pending queues. OrderId thread_posting_order_ RTC_GUARDED_BY(pending_lock_){}; // The list of all pending tasks that need to be processed in the // FIFO queue ordering on the worker thread. std::queue>> pending_queue_ RTC_GUARDED_BY(pending_lock_); // The list of all pending tasks that need to be processed at a future // time based upon a delay. On the off change the delayed task should // happen at exactly the same time interval as another task then the // task is processed based on FIFO ordering. std::priority_queue was // considered but rejected due to its inability to extract the // std::unique_ptr out of the queue without the presence of a hack. std::map> delayed_queue_ RTC_GUARDED_BY(pending_lock_); }; TaskQueueStdlib::TaskQueueStdlib(absl::string_view queue_name, rtc::ThreadPriority priority) : started_(/*manual_reset=*/false, /*initially_signaled=*/false), stopped_(/*manual_reset=*/false, /*initially_signaled=*/false), flag_notify_(/*manual_reset=*/false, /*initially_signaled=*/false), thread_(&TaskQueueStdlib::ThreadMain, this, queue_name, priority) { thread_.Start(); started_.Wait(rtc::Event::kForever); } void TaskQueueStdlib::Delete() { RTC_DCHECK(!IsCurrent()); { MutexLock lock(&pending_lock_); thread_should_quit_ = true; } NotifyWake(); stopped_.Wait(rtc::Event::kForever); thread_.Stop(); delete this; } void TaskQueueStdlib::PostTask(std::unique_ptr task) { { MutexLock lock(&pending_lock_); OrderId order = thread_posting_order_++; pending_queue_.push(std::pair>( order, std::move(task))); } NotifyWake(); } void TaskQueueStdlib::PostDelayedTask(std::unique_ptr task, uint32_t milliseconds) { auto fire_at = rtc::TimeMillis() + milliseconds; DelayedEntryTimeout delay; delay.next_fire_at_ms_ = fire_at; { MutexLock lock(&pending_lock_); delay.order_ = ++thread_posting_order_; delayed_queue_[delay] = std::move(task); } NotifyWake(); } TaskQueueStdlib::NextTask TaskQueueStdlib::GetNextTask() { NextTask result{}; auto tick = rtc::TimeMillis(); MutexLock lock(&pending_lock_); if (thread_should_quit_) { result.final_task_ = true; return result; } if (delayed_queue_.size() > 0) { auto delayed_entry = delayed_queue_.begin(); const auto& delay_info = delayed_entry->first; auto& delay_run = delayed_entry->second; if (tick >= delay_info.next_fire_at_ms_) { if (pending_queue_.size() > 0) { auto& entry = pending_queue_.front(); auto& entry_order = entry.first; auto& entry_run = entry.second; if (entry_order < delay_info.order_) { result.run_task_ = std::move(entry_run); pending_queue_.pop(); return result; } } result.run_task_ = std::move(delay_run); delayed_queue_.erase(delayed_entry); return result; } result.sleep_time_ms_ = delay_info.next_fire_at_ms_ - tick; } if (pending_queue_.size() > 0) { auto& entry = pending_queue_.front(); result.run_task_ = std::move(entry.second); pending_queue_.pop(); } return result; } // static void TaskQueueStdlib::ThreadMain(void* context) { TaskQueueStdlib* me = static_cast(context); CurrentTaskQueueSetter set_current(me); me->ProcessTasks(); } void TaskQueueStdlib::ProcessTasks() { started_.Set(); while (true) { auto task = GetNextTask(); if (task.final_task_) break; if (task.run_task_) { // process entry immediately then try again QueuedTask* release_ptr = task.run_task_.release(); if (release_ptr->Run()) delete release_ptr; // attempt to sleep again continue; } if (0 == task.sleep_time_ms_) flag_notify_.Wait(rtc::Event::kForever); else flag_notify_.Wait(task.sleep_time_ms_); } stopped_.Set(); } void TaskQueueStdlib::NotifyWake() { // The queue holds pending tasks to complete. Either tasks are to be // executed immediately or tasks are to be run at some future delayed time. // For immediate tasks the task queue's thread is busy running the task and // the thread will not be waiting on the flag_notify_ event. If no immediate // tasks are available but a delayed task is pending then the thread will be // waiting on flag_notify_ with a delayed time-out of the nearest timed task // to run. If no immediate or pending tasks are available, the thread will // wait on flag_notify_ until signaled that a task has been added (or the // thread to be told to shutdown). // In all cases, when a new immediate task, delayed task, or request to // shutdown the thread is added the flag_notify_ is signaled after. If the // thread was waiting then the thread will wake up immediately and re-assess // what task needs to be run next (i.e. run a task now, wait for the nearest // timed delayed task, or shutdown the thread). If the thread was not waiting // then the thread will remained signaled to wake up the next time any // attempt to wait on the flag_notify_ event occurs. // Any immediate or delayed pending task (or request to shutdown the thread) // must always be added to the queue prior to signaling flag_notify_ to wake // up the possibly sleeping thread. This prevents a race condition where the // thread is notified to wake up but the task queue's thread finds nothing to // do so it waits once again to be signaled where such a signal may never // happen. flag_notify_.Set(); } class TaskQueueStdlibFactory final : public TaskQueueFactory { public: std::unique_ptr CreateTaskQueue( absl::string_view name, Priority priority) const override { return std::unique_ptr( new TaskQueueStdlib(name, TaskQueuePriorityToThreadPriority(priority))); } }; } // namespace std::unique_ptr CreateTaskQueueStdlibFactory() { return std::make_unique(); } } // namespace webrtc