/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/win32.h" #include #include #include #include "rtc_base/arraysize.h" #include "rtc_base/byte_order.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/string_utils.h" namespace rtc { // Helper function declarations for inet_ntop/inet_pton. static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size); static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size); static int inet_pton_v4(const char* src, void* dst); static int inet_pton_v6(const char* src, void* dst); // Implementation of inet_ntop (create a printable representation of an // ip address). XP doesn't have its own inet_ntop, and // WSAAddressToString requires both IPv6 to be installed and for Winsock // to be initialized. const char* win32_inet_ntop(int af, const void* src, char* dst, socklen_t size) { if (!src || !dst) { return nullptr; } switch (af) { case AF_INET: { return inet_ntop_v4(src, dst, size); } case AF_INET6: { return inet_ntop_v6(src, dst, size); } } return nullptr; } // As above, but for inet_pton. Implements inet_pton for v4 and v6. // Note that our inet_ntop will output normal 'dotted' v4 addresses only. int win32_inet_pton(int af, const char* src, void* dst) { if (!src || !dst) { return 0; } if (af == AF_INET) { return inet_pton_v4(src, dst); } else if (af == AF_INET6) { return inet_pton_v6(src, dst); } return -1; } // Helper function for inet_ntop for IPv4 addresses. // Outputs "dotted-quad" decimal notation. const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) { if (size < INET_ADDRSTRLEN) { return nullptr; } const struct in_addr* as_in_addr = reinterpret_cast(src); snprintf(dst, size, "%d.%d.%d.%d", as_in_addr->S_un.S_un_b.s_b1, as_in_addr->S_un.S_un_b.s_b2, as_in_addr->S_un.S_un_b.s_b3, as_in_addr->S_un.S_un_b.s_b4); return dst; } // Helper function for inet_ntop for IPv6 addresses. const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) { if (size < INET6_ADDRSTRLEN) { return nullptr; } const uint16_t* as_shorts = reinterpret_cast(src); int runpos[8]; int current = 1; int max = 0; int maxpos = -1; int run_array_size = arraysize(runpos); // Run over the address marking runs of 0s. for (int i = 0; i < run_array_size; ++i) { if (as_shorts[i] == 0) { runpos[i] = current; if (current > max) { maxpos = i; max = current; } ++current; } else { runpos[i] = -1; current = 1; } } if (max > 0) { int tmpmax = maxpos; // Run back through, setting -1 for all but the longest run. for (int i = run_array_size - 1; i >= 0; i--) { if (i > tmpmax) { runpos[i] = -1; } else if (runpos[i] == -1) { // We're less than maxpos, we hit a -1, so the 'good' run is done. // Setting tmpmax -1 means all remaining positions get set to -1. tmpmax = -1; } } } char* cursor = dst; // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper. // These addresses have an initial run of either eight zero-bytes followed // by 0xFFFF, or an initial run of ten zero-bytes. if (runpos[0] == 1 && (maxpos == 5 || (maxpos == 4 && as_shorts[5] == 0xFFFF))) { *cursor++ = ':'; *cursor++ = ':'; if (maxpos == 4) { cursor += snprintf(cursor, INET6_ADDRSTRLEN - 2, "ffff:"); } const struct in_addr* as_v4 = reinterpret_cast(&(as_shorts[6])); inet_ntop_v4(as_v4, cursor, static_cast(INET6_ADDRSTRLEN - (cursor - dst))); } else { for (int i = 0; i < run_array_size; ++i) { if (runpos[i] == -1) { cursor += snprintf(cursor, INET6_ADDRSTRLEN - (cursor - dst), "%x", NetworkToHost16(as_shorts[i])); if (i != 7 && runpos[i + 1] != 1) { *cursor++ = ':'; } } else if (runpos[i] == 1) { // Entered the run; print the colons and skip the run. *cursor++ = ':'; *cursor++ = ':'; i += (max - 1); } } } return dst; } // Helper function for inet_pton for IPv4 addresses. // |src| points to a character string containing an IPv4 network address in // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number // of up to three digits in the range 0 to 255. // The address is converted and copied to dst, // which must be sizeof(struct in_addr) (4) bytes (32 bits) long. int inet_pton_v4(const char* src, void* dst) { const int kIpv4AddressSize = 4; int found = 0; const char* src_pos = src; unsigned char result[kIpv4AddressSize] = {0}; while (*src_pos != '\0') { // strtol won't treat whitespace characters in the begining as an error, // so check to ensure this is started with digit before passing to strtol. if (!isdigit(*src_pos)) { return 0; } char* end_pos; long value = strtol(src_pos, &end_pos, 10); if (value < 0 || value > 255 || src_pos == end_pos) { return 0; } ++found; if (found > kIpv4AddressSize) { return 0; } result[found - 1] = static_cast(value); src_pos = end_pos; if (*src_pos == '.') { // There's more. ++src_pos; } else if (*src_pos != '\0') { // If it's neither '.' nor '\0' then return fail. return 0; } } if (found != kIpv4AddressSize) { return 0; } memcpy(dst, result, sizeof(result)); return 1; } // Helper function for inet_pton for IPv6 addresses. int inet_pton_v6(const char* src, void* dst) { // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex. // Check for literal x in the input string. const char* readcursor = src; char c = *readcursor++; while (c) { if (c == 'x') { return 0; } c = *readcursor++; } readcursor = src; struct in6_addr an_addr; memset(&an_addr, 0, sizeof(an_addr)); uint16_t* addr_cursor = reinterpret_cast(&an_addr.s6_addr[0]); uint16_t* addr_end = reinterpret_cast(&an_addr.s6_addr[16]); bool seencompressed = false; // Addresses that start with "::" (i.e., a run of initial zeros) or // "::ffff:" can potentially be IPv4 mapped or compatibility addresses. // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1"). if (*readcursor == ':' && *(readcursor + 1) == ':' && *(readcursor + 2) != 0) { // Check for periods, which we'll take as a sign of v4 addresses. const char* addrstart = readcursor + 2; if (strchr(addrstart, '.')) { const char* colon = strchr(addrstart, ':'); if (colon) { uint16_t a_short; int bytesread = 0; if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 || a_short != 0xFFFF || bytesread != 4) { // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't. return 0; } else { an_addr.s6_addr[10] = 0xFF; an_addr.s6_addr[11] = 0xFF; addrstart = colon + 1; } } struct in_addr v4; if (inet_pton_v4(addrstart, &v4.s_addr)) { memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4)); memcpy(dst, &an_addr, sizeof(an_addr)); return 1; } else { // Invalid v4 address. return 0; } } } // For addresses without a trailing IPv4 component ('normal' IPv6 addresses). while (*readcursor != 0 && addr_cursor < addr_end) { if (*readcursor == ':') { if (*(readcursor + 1) == ':') { if (seencompressed) { // Can only have one compressed run of zeroes ("::") per address. return 0; } // Hit a compressed run. Count colons to figure out how much of the // address is skipped. readcursor += 2; const char* coloncounter = readcursor; int coloncount = 0; if (*coloncounter == 0) { // Special case - trailing ::. addr_cursor = addr_end; } else { while (*coloncounter) { if (*coloncounter == ':') { ++coloncount; } ++coloncounter; } // (coloncount + 1) is the number of shorts left in the address. // If this number is greater than the number of available shorts, the // address is malformed. if (coloncount + 1 > addr_end - addr_cursor) { return 0; } addr_cursor = addr_end - (coloncount + 1); seencompressed = true; } } else { ++readcursor; } } else { uint16_t word; int bytesread = 0; if (sscanf(readcursor, "%4hx%n", &word, &bytesread) != 1) { return 0; } else { *addr_cursor = HostToNetwork16(word); ++addr_cursor; readcursor += bytesread; if (*readcursor != ':' && *readcursor != '\0') { return 0; } } } } if (*readcursor != '\0' || addr_cursor < addr_end) { // Catches addresses too short or too long. return 0; } memcpy(dst, &an_addr, sizeof(an_addr)); return 1; } // Windows UWP applications cannot obtain versioning information from // the sandbox with intention (as behehaviour based on OS versioning rather // than feature discovery / compilation flags is discoraged and Windows // 10 is living continously updated version unlike previous versions // of Windows). #if !defined(WINUWP) bool GetOsVersion(int* major, int* minor, int* build) { OSVERSIONINFO info = {0}; info.dwOSVersionInfoSize = sizeof(info); if (GetVersionEx(&info)) { if (major) *major = info.dwMajorVersion; if (minor) *minor = info.dwMinorVersion; if (build) *build = info.dwBuildNumber; return true; } return false; } #endif // !defined(WINUWP) } // namespace rtc