/* * Copyright 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/video_send_stream_impl.h" #include #include #include #include #include #include "absl/algorithm/container.h" #include "api/crypto/crypto_options.h" #include "api/rtp_parameters.h" #include "api/scoped_refptr.h" #include "api/video_codecs/video_codec.h" #include "call/rtp_transport_controller_send_interface.h" #include "call/video_send_stream.h" #include "modules/pacing/paced_sender.h" #include "rtc_base/atomic_ops.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/alr_experiment.h" #include "rtc_base/experiments/field_trial_parser.h" #include "rtc_base/experiments/min_video_bitrate_experiment.h" #include "rtc_base/experiments/rate_control_settings.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/synchronization/sequence_checker.h" #include "rtc_base/thread_checker.h" #include "rtc_base/trace_event.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace internal { namespace { // Max positive size difference to treat allocations as "similar". static constexpr int kMaxVbaSizeDifferencePercent = 10; // Max time we will throttle similar video bitrate allocations. static constexpr int64_t kMaxVbaThrottleTimeMs = 500; constexpr TimeDelta kEncoderTimeOut = TimeDelta::Seconds(2); // When send-side BWE is used a stricter 1.1x pacing factor is used, rather than // the 2.5x which is used with receive-side BWE. Provides a more careful // bandwidth rampup with less risk of overshoots causing adverse effects like // packet loss. Not used for receive side BWE, since there we lack the probing // feature and so may result in too slow initial rampup. static constexpr double kStrictPacingMultiplier = 1.1; bool TransportSeqNumExtensionConfigured(const VideoSendStream::Config& config) { const std::vector& extensions = config.rtp.extensions; return absl::c_any_of(extensions, [](const RtpExtension& ext) { return ext.uri == RtpExtension::kTransportSequenceNumberUri; }); } // Calculate max padding bitrate for a multi layer codec. int CalculateMaxPadBitrateBps(const std::vector& streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps, bool pad_to_min_bitrate, bool alr_probing) { int pad_up_to_bitrate_bps = 0; RTC_DCHECK(!is_svc || streams.size() <= 1) << "Only one stream is allowed in " "SVC mode."; // Filter out only the active streams; std::vector active_streams; for (const VideoStream& stream : streams) { if (stream.active) active_streams.emplace_back(stream); } if (active_streams.size() > 1 || (!active_streams.empty() && is_svc)) { // Simulcast or SVC is used. // if SVC is used, stream bitrates should already encode svc bitrates: // min_bitrate = min bitrate of a lowest svc layer. // target_bitrate = sum of target bitrates of lower layers + min bitrate // of the last one (as used in the calculations below). // max_bitrate = sum of all active layers' max_bitrate. if (alr_probing) { // With alr probing, just pad to the min bitrate of the lowest stream, // probing will handle the rest of the rampup. pad_up_to_bitrate_bps = active_streams[0].min_bitrate_bps; } else { // Without alr probing, pad up to start bitrate of the // highest active stream. const double hysteresis_factor = RateControlSettings::ParseFromFieldTrials() .GetSimulcastHysteresisFactor(content_type); if (is_svc) { // For SVC, since there is only one "stream", the padding bitrate // needed to enable the top spatial layer is stored in the // |target_bitrate_bps| field. // TODO(sprang): This behavior needs to die. pad_up_to_bitrate_bps = static_cast( hysteresis_factor * active_streams[0].target_bitrate_bps + 0.5); } else { const size_t top_active_stream_idx = active_streams.size() - 1; pad_up_to_bitrate_bps = std::min( static_cast( hysteresis_factor * active_streams[top_active_stream_idx].min_bitrate_bps + 0.5), active_streams[top_active_stream_idx].target_bitrate_bps); // Add target_bitrate_bps of the lower active streams. for (size_t i = 0; i < top_active_stream_idx; ++i) { pad_up_to_bitrate_bps += active_streams[i].target_bitrate_bps; } } } } else if (!active_streams.empty() && pad_to_min_bitrate) { pad_up_to_bitrate_bps = active_streams[0].min_bitrate_bps; } pad_up_to_bitrate_bps = std::max(pad_up_to_bitrate_bps, min_transmit_bitrate_bps); return pad_up_to_bitrate_bps; } RtpSenderFrameEncryptionConfig CreateFrameEncryptionConfig( const VideoSendStream::Config* config) { RtpSenderFrameEncryptionConfig frame_encryption_config; frame_encryption_config.frame_encryptor = config->frame_encryptor; frame_encryption_config.crypto_options = config->crypto_options; return frame_encryption_config; } RtpSenderObservers CreateObservers(RtcpRttStats* call_stats, EncoderRtcpFeedback* encoder_feedback, SendStatisticsProxy* stats_proxy, SendDelayStats* send_delay_stats) { RtpSenderObservers observers; observers.rtcp_rtt_stats = call_stats; observers.intra_frame_callback = encoder_feedback; observers.rtcp_loss_notification_observer = encoder_feedback; observers.rtcp_stats = stats_proxy; observers.report_block_data_observer = stats_proxy; observers.rtp_stats = stats_proxy; observers.bitrate_observer = stats_proxy; observers.frame_count_observer = stats_proxy; observers.rtcp_type_observer = stats_proxy; observers.send_delay_observer = stats_proxy; observers.send_packet_observer = send_delay_stats; return observers; } absl::optional GetAlrSettings( VideoEncoderConfig::ContentType content_type) { if (content_type == VideoEncoderConfig::ContentType::kScreen) { return AlrExperimentSettings::CreateFromFieldTrial( AlrExperimentSettings::kScreenshareProbingBweExperimentName); } return AlrExperimentSettings::CreateFromFieldTrial( AlrExperimentSettings::kStrictPacingAndProbingExperimentName); } bool SameStreamsEnabled(const VideoBitrateAllocation& lhs, const VideoBitrateAllocation& rhs) { for (size_t si = 0; si < kMaxSpatialLayers; ++si) { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { if (lhs.HasBitrate(si, ti) != rhs.HasBitrate(si, ti)) { return false; } } } return true; } } // namespace PacingConfig::PacingConfig() : pacing_factor("factor", kStrictPacingMultiplier), max_pacing_delay("max_delay", TimeDelta::Millis(PacedSender::kMaxQueueLengthMs)) { ParseFieldTrial({&pacing_factor, &max_pacing_delay}, field_trial::FindFullName("WebRTC-Video-Pacing")); } PacingConfig::PacingConfig(const PacingConfig&) = default; PacingConfig::~PacingConfig() = default; VideoSendStreamImpl::VideoSendStreamImpl( Clock* clock, SendStatisticsProxy* stats_proxy, rtc::TaskQueue* worker_queue, RtcpRttStats* call_stats, RtpTransportControllerSendInterface* transport, BitrateAllocatorInterface* bitrate_allocator, SendDelayStats* send_delay_stats, VideoStreamEncoderInterface* video_stream_encoder, RtcEventLog* event_log, const VideoSendStream::Config* config, int initial_encoder_max_bitrate, double initial_encoder_bitrate_priority, std::map suspended_ssrcs, std::map suspended_payload_states, VideoEncoderConfig::ContentType content_type, std::unique_ptr fec_controller) : clock_(clock), has_alr_probing_(config->periodic_alr_bandwidth_probing || GetAlrSettings(content_type)), pacing_config_(PacingConfig()), stats_proxy_(stats_proxy), config_(config), worker_queue_(worker_queue), timed_out_(false), transport_(transport), bitrate_allocator_(bitrate_allocator), disable_padding_(true), max_padding_bitrate_(0), encoder_min_bitrate_bps_(0), encoder_target_rate_bps_(0), encoder_bitrate_priority_(initial_encoder_bitrate_priority), has_packet_feedback_(false), video_stream_encoder_(video_stream_encoder), encoder_feedback_(clock, config_->rtp.ssrcs, video_stream_encoder), bandwidth_observer_(transport->GetBandwidthObserver()), rtp_video_sender_( transport_->CreateRtpVideoSender(suspended_ssrcs, suspended_payload_states, config_->rtp, config_->rtcp_report_interval_ms, config_->send_transport, CreateObservers(call_stats, &encoder_feedback_, stats_proxy_, send_delay_stats), event_log, std::move(fec_controller), CreateFrameEncryptionConfig(config_), config->frame_transformer)), weak_ptr_factory_(this) { video_stream_encoder->SetFecControllerOverride(rtp_video_sender_); RTC_DCHECK_RUN_ON(worker_queue_); RTC_LOG(LS_INFO) << "VideoSendStreamInternal: " << config_->ToString(); weak_ptr_ = weak_ptr_factory_.GetWeakPtr(); encoder_feedback_.SetRtpVideoSender(rtp_video_sender_); RTC_DCHECK(!config_->rtp.ssrcs.empty()); RTC_DCHECK(transport_); RTC_DCHECK_NE(initial_encoder_max_bitrate, 0); if (initial_encoder_max_bitrate > 0) { encoder_max_bitrate_bps_ = rtc::dchecked_cast(initial_encoder_max_bitrate); } else { // TODO(srte): Make sure max bitrate is not set to negative values. We don't // have any way to handle unset values in downstream code, such as the // bitrate allocator. Previously -1 was implicitly casted to UINT32_MAX, a // behaviour that is not safe. Converting to 10 Mbps should be safe for // reasonable use cases as it allows adding the max of multiple streams // without wrappping around. const int kFallbackMaxBitrateBps = 10000000; RTC_DLOG(LS_ERROR) << "ERROR: Initial encoder max bitrate = " << initial_encoder_max_bitrate << " which is <= 0!"; RTC_DLOG(LS_INFO) << "Using default encoder max bitrate = 10 Mbps"; encoder_max_bitrate_bps_ = kFallbackMaxBitrateBps; } RTC_CHECK(AlrExperimentSettings::MaxOneFieldTrialEnabled()); // If send-side BWE is enabled, check if we should apply updated probing and // pacing settings. if (TransportSeqNumExtensionConfigured(*config_)) { has_packet_feedback_ = true; absl::optional alr_settings = GetAlrSettings(content_type); if (alr_settings) { transport->EnablePeriodicAlrProbing(true); transport->SetPacingFactor(alr_settings->pacing_factor); configured_pacing_factor_ = alr_settings->pacing_factor; transport->SetQueueTimeLimit(alr_settings->max_paced_queue_time); } else { RateControlSettings rate_control_settings = RateControlSettings::ParseFromFieldTrials(); transport->EnablePeriodicAlrProbing( rate_control_settings.UseAlrProbing()); const double pacing_factor = rate_control_settings.GetPacingFactor().value_or( pacing_config_.pacing_factor); transport->SetPacingFactor(pacing_factor); configured_pacing_factor_ = pacing_factor; transport->SetQueueTimeLimit(pacing_config_.max_pacing_delay.Get().ms()); } } if (config_->periodic_alr_bandwidth_probing) { transport->EnablePeriodicAlrProbing(true); } RTC_DCHECK_GE(config_->rtp.payload_type, 0); RTC_DCHECK_LE(config_->rtp.payload_type, 127); video_stream_encoder_->SetStartBitrate( bitrate_allocator_->GetStartBitrate(this)); } VideoSendStreamImpl::~VideoSendStreamImpl() { RTC_DCHECK_RUN_ON(worker_queue_); RTC_DCHECK(!rtp_video_sender_->IsActive()) << "VideoSendStreamImpl::Stop not called"; RTC_LOG(LS_INFO) << "~VideoSendStreamInternal: " << config_->ToString(); transport_->DestroyRtpVideoSender(rtp_video_sender_); } void VideoSendStreamImpl::RegisterProcessThread( ProcessThread* module_process_thread) { // Called on libjingle's worker thread (not worker_queue_), as part of the // initialization steps. That's also the correct thread/queue for setting the // state for |video_stream_encoder_|. // Only request rotation at the source when we positively know that the remote // side doesn't support the rotation extension. This allows us to prepare the // encoder in the expectation that rotation is supported - which is the common // case. bool rotation_applied = absl::c_none_of( config_->rtp.extensions, [](const RtpExtension& extension) { return extension.uri == RtpExtension::kVideoRotationUri; }); video_stream_encoder_->SetSink(this, rotation_applied); rtp_video_sender_->RegisterProcessThread(module_process_thread); } void VideoSendStreamImpl::DeRegisterProcessThread() { rtp_video_sender_->DeRegisterProcessThread(); } void VideoSendStreamImpl::DeliverRtcp(const uint8_t* packet, size_t length) { // Runs on a network thread. RTC_DCHECK(!worker_queue_->IsCurrent()); rtp_video_sender_->DeliverRtcp(packet, length); } void VideoSendStreamImpl::UpdateActiveSimulcastLayers( const std::vector active_layers) { RTC_DCHECK_RUN_ON(worker_queue_); bool previously_active = rtp_video_sender_->IsActive(); rtp_video_sender_->SetActiveModules(active_layers); if (!rtp_video_sender_->IsActive() && previously_active) { // Payload router switched from active to inactive. StopVideoSendStream(); } else if (rtp_video_sender_->IsActive() && !previously_active) { // Payload router switched from inactive to active. StartupVideoSendStream(); } } void VideoSendStreamImpl::Start() { RTC_DCHECK_RUN_ON(worker_queue_); RTC_LOG(LS_INFO) << "VideoSendStream::Start"; if (rtp_video_sender_->IsActive()) return; TRACE_EVENT_INSTANT0("webrtc", "VideoSendStream::Start"); rtp_video_sender_->SetActive(true); StartupVideoSendStream(); } void VideoSendStreamImpl::StartupVideoSendStream() { RTC_DCHECK_RUN_ON(worker_queue_); bitrate_allocator_->AddObserver(this, GetAllocationConfig()); // Start monitoring encoder activity. { RTC_DCHECK(!check_encoder_activity_task_.Running()); activity_ = false; timed_out_ = false; check_encoder_activity_task_ = RepeatingTaskHandle::DelayedStart( worker_queue_->Get(), kEncoderTimeOut, [this] { RTC_DCHECK_RUN_ON(worker_queue_); if (!activity_) { if (!timed_out_) { SignalEncoderTimedOut(); } timed_out_ = true; disable_padding_ = true; } else if (timed_out_) { SignalEncoderActive(); timed_out_ = false; } activity_ = false; return kEncoderTimeOut; }); } video_stream_encoder_->SendKeyFrame(); } void VideoSendStreamImpl::Stop() { RTC_DCHECK_RUN_ON(worker_queue_); RTC_LOG(LS_INFO) << "VideoSendStream::Stop"; if (!rtp_video_sender_->IsActive()) return; TRACE_EVENT_INSTANT0("webrtc", "VideoSendStream::Stop"); rtp_video_sender_->SetActive(false); StopVideoSendStream(); } void VideoSendStreamImpl::StopVideoSendStream() { bitrate_allocator_->RemoveObserver(this); check_encoder_activity_task_.Stop(); video_stream_encoder_->OnBitrateUpdated(DataRate::Zero(), DataRate::Zero(), DataRate::Zero(), 0, 0, 0); stats_proxy_->OnSetEncoderTargetRate(0); } void VideoSendStreamImpl::SignalEncoderTimedOut() { RTC_DCHECK_RUN_ON(worker_queue_); // If the encoder has not produced anything the last kEncoderTimeOut and it // is supposed to, deregister as BitrateAllocatorObserver. This can happen // if a camera stops producing frames. if (encoder_target_rate_bps_ > 0) { RTC_LOG(LS_INFO) << "SignalEncoderTimedOut, Encoder timed out."; bitrate_allocator_->RemoveObserver(this); } } void VideoSendStreamImpl::OnBitrateAllocationUpdated( const VideoBitrateAllocation& allocation) { if (!worker_queue_->IsCurrent()) { auto ptr = weak_ptr_; worker_queue_->PostTask([=] { if (!ptr.get()) return; ptr->OnBitrateAllocationUpdated(allocation); }); return; } RTC_DCHECK_RUN_ON(worker_queue_); int64_t now_ms = clock_->TimeInMilliseconds(); if (encoder_target_rate_bps_ != 0) { if (video_bitrate_allocation_context_) { // If new allocation is within kMaxVbaSizeDifferencePercent larger than // the previously sent allocation and the same streams are still enabled, // it is considered "similar". We do not want send similar allocations // more once per kMaxVbaThrottleTimeMs. const VideoBitrateAllocation& last = video_bitrate_allocation_context_->last_sent_allocation; const bool is_similar = allocation.get_sum_bps() >= last.get_sum_bps() && allocation.get_sum_bps() < (last.get_sum_bps() * (100 + kMaxVbaSizeDifferencePercent)) / 100 && SameStreamsEnabled(allocation, last); if (is_similar && (now_ms - video_bitrate_allocation_context_->last_send_time_ms) < kMaxVbaThrottleTimeMs) { // This allocation is too similar, cache it and return. video_bitrate_allocation_context_->throttled_allocation = allocation; return; } } else { video_bitrate_allocation_context_.emplace(); } video_bitrate_allocation_context_->last_sent_allocation = allocation; video_bitrate_allocation_context_->throttled_allocation.reset(); video_bitrate_allocation_context_->last_send_time_ms = now_ms; // Send bitrate allocation metadata only if encoder is not paused. rtp_video_sender_->OnBitrateAllocationUpdated(allocation); } } void VideoSendStreamImpl::OnVideoLayersAllocationUpdated( VideoLayersAllocation allocation) { if (!worker_queue_->IsCurrent()) { auto ptr = weak_ptr_; worker_queue_->PostTask([allocation = std::move(allocation), ptr] { if (!ptr.get()) return; ptr->OnVideoLayersAllocationUpdated(allocation); }); return; } rtp_video_sender_->OnVideoLayersAllocationUpdated(allocation); } void VideoSendStreamImpl::SignalEncoderActive() { RTC_DCHECK_RUN_ON(worker_queue_); if (rtp_video_sender_->IsActive()) { RTC_LOG(LS_INFO) << "SignalEncoderActive, Encoder is active."; bitrate_allocator_->AddObserver(this, GetAllocationConfig()); } } MediaStreamAllocationConfig VideoSendStreamImpl::GetAllocationConfig() const { return MediaStreamAllocationConfig{ static_cast(encoder_min_bitrate_bps_), encoder_max_bitrate_bps_, static_cast(disable_padding_ ? 0 : max_padding_bitrate_), /* priority_bitrate */ 0, !config_->suspend_below_min_bitrate, encoder_bitrate_priority_}; } void VideoSendStreamImpl::OnEncoderConfigurationChanged( std::vector streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps) { if (!worker_queue_->IsCurrent()) { rtc::WeakPtr send_stream = weak_ptr_; worker_queue_->PostTask([send_stream, streams, is_svc, content_type, min_transmit_bitrate_bps]() mutable { if (send_stream) { send_stream->OnEncoderConfigurationChanged( std::move(streams), is_svc, content_type, min_transmit_bitrate_bps); } }); return; } RTC_DCHECK_GE(config_->rtp.ssrcs.size(), streams.size()); TRACE_EVENT0("webrtc", "VideoSendStream::OnEncoderConfigurationChanged"); RTC_DCHECK_RUN_ON(worker_queue_); const VideoCodecType codec_type = PayloadStringToCodecType(config_->rtp.payload_name); const absl::optional experimental_min_bitrate = GetExperimentalMinVideoBitrate(codec_type); encoder_min_bitrate_bps_ = experimental_min_bitrate ? experimental_min_bitrate->bps() : std::max(streams[0].min_bitrate_bps, kDefaultMinVideoBitrateBps); encoder_max_bitrate_bps_ = 0; double stream_bitrate_priority_sum = 0; for (const auto& stream : streams) { // We don't want to allocate more bitrate than needed to inactive streams. encoder_max_bitrate_bps_ += stream.active ? stream.max_bitrate_bps : 0; if (stream.bitrate_priority) { RTC_DCHECK_GT(*stream.bitrate_priority, 0); stream_bitrate_priority_sum += *stream.bitrate_priority; } } RTC_DCHECK_GT(stream_bitrate_priority_sum, 0); encoder_bitrate_priority_ = stream_bitrate_priority_sum; encoder_max_bitrate_bps_ = std::max(static_cast(encoder_min_bitrate_bps_), encoder_max_bitrate_bps_); // TODO(bugs.webrtc.org/10266): Query the VideoBitrateAllocator instead. max_padding_bitrate_ = CalculateMaxPadBitrateBps( streams, is_svc, content_type, min_transmit_bitrate_bps, config_->suspend_below_min_bitrate, has_alr_probing_); // Clear stats for disabled layers. for (size_t i = streams.size(); i < config_->rtp.ssrcs.size(); ++i) { stats_proxy_->OnInactiveSsrc(config_->rtp.ssrcs[i]); } const size_t num_temporal_layers = streams.back().num_temporal_layers.value_or(1); rtp_video_sender_->SetEncodingData(streams[0].width, streams[0].height, num_temporal_layers); if (rtp_video_sender_->IsActive()) { // The send stream is started already. Update the allocator with new bitrate // limits. bitrate_allocator_->AddObserver(this, GetAllocationConfig()); } } EncodedImageCallback::Result VideoSendStreamImpl::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info) { // Encoded is called on whatever thread the real encoder implementation run // on. In the case of hardware encoders, there might be several encoders // running in parallel on different threads. // Indicate that there still is activity going on. activity_ = true; auto enable_padding_task = [this]() { if (disable_padding_) { RTC_DCHECK_RUN_ON(worker_queue_); disable_padding_ = false; // To ensure that padding bitrate is propagated to the bitrate allocator. SignalEncoderActive(); } }; if (!worker_queue_->IsCurrent()) { worker_queue_->PostTask(enable_padding_task); } else { enable_padding_task(); } EncodedImageCallback::Result result(EncodedImageCallback::Result::OK); result = rtp_video_sender_->OnEncodedImage(encoded_image, codec_specific_info); // Check if there's a throttled VideoBitrateAllocation that we should try // sending. rtc::WeakPtr send_stream = weak_ptr_; auto update_task = [send_stream]() { if (send_stream) { RTC_DCHECK_RUN_ON(send_stream->worker_queue_); auto& context = send_stream->video_bitrate_allocation_context_; if (context && context->throttled_allocation) { send_stream->OnBitrateAllocationUpdated(*context->throttled_allocation); } } }; if (!worker_queue_->IsCurrent()) { worker_queue_->PostTask(update_task); } else { update_task(); } return result; } void VideoSendStreamImpl::OnDroppedFrame( EncodedImageCallback::DropReason reason) { activity_ = true; } std::map VideoSendStreamImpl::GetRtpStates() const { return rtp_video_sender_->GetRtpStates(); } std::map VideoSendStreamImpl::GetRtpPayloadStates() const { return rtp_video_sender_->GetRtpPayloadStates(); } uint32_t VideoSendStreamImpl::OnBitrateUpdated(BitrateAllocationUpdate update) { RTC_DCHECK_RUN_ON(worker_queue_); RTC_DCHECK(rtp_video_sender_->IsActive()) << "VideoSendStream::Start has not been called."; // When the BWE algorithm doesn't pass a stable estimate, we'll use the // unstable one instead. if (update.stable_target_bitrate.IsZero()) { update.stable_target_bitrate = update.target_bitrate; } rtp_video_sender_->OnBitrateUpdated(update, stats_proxy_->GetSendFrameRate()); encoder_target_rate_bps_ = rtp_video_sender_->GetPayloadBitrateBps(); const uint32_t protection_bitrate_bps = rtp_video_sender_->GetProtectionBitrateBps(); DataRate link_allocation = DataRate::Zero(); if (encoder_target_rate_bps_ > protection_bitrate_bps) { link_allocation = DataRate::BitsPerSec(encoder_target_rate_bps_ - protection_bitrate_bps); } DataRate overhead = update.target_bitrate - DataRate::BitsPerSec(encoder_target_rate_bps_); DataRate encoder_stable_target_rate = update.stable_target_bitrate; if (encoder_stable_target_rate > overhead) { encoder_stable_target_rate = encoder_stable_target_rate - overhead; } else { encoder_stable_target_rate = DataRate::BitsPerSec(encoder_target_rate_bps_); } encoder_target_rate_bps_ = std::min(encoder_max_bitrate_bps_, encoder_target_rate_bps_); encoder_stable_target_rate = std::min(DataRate::BitsPerSec(encoder_max_bitrate_bps_), encoder_stable_target_rate); DataRate encoder_target_rate = DataRate::BitsPerSec(encoder_target_rate_bps_); link_allocation = std::max(encoder_target_rate, link_allocation); video_stream_encoder_->OnBitrateUpdated( encoder_target_rate, encoder_stable_target_rate, link_allocation, rtc::dchecked_cast(update.packet_loss_ratio * 256), update.round_trip_time.ms(), update.cwnd_reduce_ratio); stats_proxy_->OnSetEncoderTargetRate(encoder_target_rate_bps_); return protection_bitrate_bps; } } // namespace internal } // namespace webrtc