#ifndef FPX_H_ #define FPX_H_ #include "utils.h" #if defined(__cplusplus) extern "C" { #endif // Modular addition, c = a+b mod p. void sike_fpadd(const felm_t a, const felm_t b, felm_t c); // Modular subtraction, c = a-b mod p. void sike_fpsub(const felm_t a, const felm_t b, felm_t c); // Modular division by two, c = a/2 mod p. void sike_fpdiv2(const felm_t a, felm_t c); // Modular correction to reduce field element a in [0, 2*p-1] to [0, p-1]. void sike_fpcorrection(felm_t a); // Multiprecision multiply, c = a*b, where lng(a) = lng(b) = nwords. void sike_mpmul(const felm_t a, const felm_t b, dfelm_t c); // 443-bit Montgomery reduction, c = a mod p. Buffer 'a' is modified after // call returns. void sike_fprdc(dfelm_t a, felm_t c); // Double 2x443-bit multiprecision subtraction, c = c-a-b void sike_mpdblsubx2_asm(const felm_t a, const felm_t b, felm_t c); // Multiprecision subtraction, c = a-b crypto_word_t sike_mpsubx2_asm(const dfelm_t a, const dfelm_t b, dfelm_t c); // 443-bit multiprecision addition, c = a+b void sike_mpadd_asm(const felm_t a, const felm_t b, felm_t c); // Modular negation, a = -a mod p. void sike_fpneg(felm_t a); // Copy of a field element, c = a void sike_fpcopy(const felm_t a, felm_t c); // Copy a field element, c = a. void sike_fpzero(felm_t a); // If option = 0xFF...FF x=y; y=x, otherwise swap doesn't happen. Constant time. void sike_cswap_asm(point_proj_t x, point_proj_t y, const crypto_word_t option); // Conversion from Montgomery representation to standard representation, // c = ma*R^(-1) mod p = a mod p, where ma in [0, p-1]. void sike_from_mont(const felm_t ma, felm_t c); // Field multiplication using Montgomery arithmetic, c = a*b*R^-1 mod p443, where R=2^768 void sike_fpmul_mont(const felm_t ma, const felm_t mb, felm_t mc); // GF(p443^2) multiplication using Montgomery arithmetic, c = a*b in GF(p443^2) void sike_fp2mul_mont(const f2elm_t a, const f2elm_t b, f2elm_t c); // GF(p443^2) inversion using Montgomery arithmetic, a = (a0-i*a1)/(a0^2+a1^2) void sike_fp2inv_mont(f2elm_t a); // GF(p^2) squaring using Montgomery arithmetic, c = a^2 in GF(p^2). void sike_fp2sqr_mont(const f2elm_t a, f2elm_t c); // Modular correction, a = a in GF(p^2). void sike_fp2correction(f2elm_t a); #if defined(__cplusplus) } // extern C #endif // GF(p^2) addition, c = a+b in GF(p^2). #define sike_fp2add(a, b, c) \ do { \ sike_fpadd(a->c0, b->c0, c->c0); \ sike_fpadd(a->c1, b->c1, c->c1); \ } while(0) // GF(p^2) subtraction, c = a-b in GF(p^2). #define sike_fp2sub(a,b,c) \ do { \ sike_fpsub(a->c0, b->c0, c->c0); \ sike_fpsub(a->c1, b->c1, c->c1); \ } while(0) // Copy a GF(p^2) element, c = a. #define sike_fp2copy(a, c) \ do { \ sike_fpcopy(a->c0, c->c0); \ sike_fpcopy(a->c1, c->c1); \ } while(0) // GF(p^2) negation, a = -a in GF(p^2). #define sike_fp2neg(a) \ do { \ sike_fpneg(a->c0); \ sike_fpneg(a->c1); \ } while(0) // GF(p^2) division by two, c = a/2 in GF(p^2). #define sike_fp2div2(a, c) \ do { \ sike_fpdiv2(a->c0, c->c0); \ sike_fpdiv2(a->c1, c->c1); \ } while(0) // Modular correction, a = a in GF(p^2). #define sike_fp2correction(a) \ do { \ sike_fpcorrection(a->c0); \ sike_fpcorrection(a->c1); \ } while(0) // Conversion of a GF(p^2) element to Montgomery representation, // mc_i = a_i*R^2*R^(-1) = a_i*R in GF(p^2). #define sike_to_fp2mont(a, mc) \ do { \ sike_fpmul_mont(a->c0, sike_params.mont_R2, mc->c0); \ sike_fpmul_mont(a->c1, sike_params.mont_R2, mc->c1); \ } while (0) // Conversion of a GF(p^2) element from Montgomery representation to standard representation, // c_i = ma_i*R^(-1) = a_i in GF(p^2). #define sike_from_fp2mont(ma, c) \ do { \ sike_from_mont(ma->c0, c->c0); \ sike_from_mont(ma->c1, c->c1); \ } while(0) #endif // FPX_H_