// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runner import ( "crypto" "crypto/ecdsa" "crypto/ed25519" "crypto/elliptic" "crypto/rsa" "crypto/subtle" "crypto/x509" "errors" "fmt" "io" "math/big" "boringssl.googlesource.com/boringssl/ssl/test/runner/curve25519" "boringssl.googlesource.com/boringssl/ssl/test/runner/hrss" "boringssl.googlesource.com/boringssl/ssl/test/runner/sike" ) type keyType int const ( keyTypeRSA keyType = iota + 1 keyTypeECDSA ) var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message") var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message") // rsaKeyAgreement implements the standard TLS key agreement where the client // encrypts the pre-master secret to the server's public key. type rsaKeyAgreement struct { version uint16 clientVersion uint16 exportKey *rsa.PrivateKey } func (ka *rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, version uint16) (*serverKeyExchangeMsg, error) { // Save the client version for comparison later. ka.clientVersion = clientHello.vers if !config.Bugs.RSAEphemeralKey { return nil, nil } // Generate an ephemeral RSA key to use instead of the real // one, as in RSA_EXPORT. key, err := rsa.GenerateKey(config.rand(), 512) if err != nil { return nil, err } ka.exportKey = key modulus := key.N.Bytes() exponent := big.NewInt(int64(key.E)).Bytes() serverRSAParams := make([]byte, 0, 2+len(modulus)+2+len(exponent)) serverRSAParams = append(serverRSAParams, byte(len(modulus)>>8), byte(len(modulus))) serverRSAParams = append(serverRSAParams, modulus...) serverRSAParams = append(serverRSAParams, byte(len(exponent)>>8), byte(len(exponent))) serverRSAParams = append(serverRSAParams, exponent...) var sigAlg signatureAlgorithm if ka.version >= VersionTLS12 { sigAlg, err = selectSignatureAlgorithm(ka.version, cert.PrivateKey, config, clientHello.signatureAlgorithms) if err != nil { return nil, err } } sig, err := signMessage(ka.version, cert.PrivateKey, config, sigAlg, serverRSAParams) if err != nil { return nil, errors.New("failed to sign RSA parameters: " + err.Error()) } skx := new(serverKeyExchangeMsg) sigAlgsLen := 0 if ka.version >= VersionTLS12 { sigAlgsLen = 2 } skx.key = make([]byte, len(serverRSAParams)+sigAlgsLen+2+len(sig)) copy(skx.key, serverRSAParams) k := skx.key[len(serverRSAParams):] if ka.version >= VersionTLS12 { k[0] = byte(sigAlg >> 8) k[1] = byte(sigAlg) k = k[2:] } k[0] = byte(len(sig) >> 8) k[1] = byte(len(sig)) copy(k[2:], sig) return skx, nil } func (ka *rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { preMasterSecret := make([]byte, 48) _, err := io.ReadFull(config.rand(), preMasterSecret[2:]) if err != nil { return nil, err } if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } ciphertext := ckx.ciphertext if version != VersionSSL30 { ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1]) if ciphertextLen != len(ckx.ciphertext)-2 { return nil, errClientKeyExchange } ciphertext = ckx.ciphertext[2:] } key := cert.PrivateKey.(*rsa.PrivateKey) if ka.exportKey != nil { key = ka.exportKey } err = rsa.DecryptPKCS1v15SessionKey(config.rand(), key, ciphertext, preMasterSecret) if err != nil { return nil, err } // This check should be done in constant-time, but this is a testing // implementation. See the discussion at the end of section 7.4.7.1 of // RFC 4346. vers := uint16(preMasterSecret[0])<<8 | uint16(preMasterSecret[1]) if ka.clientVersion != vers { return nil, fmt.Errorf("tls: invalid version in RSA premaster (got %04x, wanted %04x)", vers, ka.clientVersion) } return preMasterSecret, nil } func (ka *rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, key crypto.PublicKey, skx *serverKeyExchangeMsg) error { return errors.New("tls: unexpected ServerKeyExchange") } func rsaSize(pub *rsa.PublicKey) int { return (pub.N.BitLen() + 7) / 8 } func rsaRawEncrypt(pub *rsa.PublicKey, msg []byte) ([]byte, error) { k := rsaSize(pub) if len(msg) != k { return nil, errors.New("tls: bad padded RSA input") } m := new(big.Int).SetBytes(msg) e := big.NewInt(int64(pub.E)) m.Exp(m, e, pub.N) unpadded := m.Bytes() ret := make([]byte, k) copy(ret[len(ret)-len(unpadded):], unpadded) return ret, nil } // nonZeroRandomBytes fills the given slice with non-zero random octets. func nonZeroRandomBytes(s []byte, rand io.Reader) { if _, err := io.ReadFull(rand, s); err != nil { panic(err) } for i := range s { for s[i] == 0 { if _, err := io.ReadFull(rand, s[i:i+1]); err != nil { panic(err) } } } } func (ka *rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { bad := config.Bugs.BadRSAClientKeyExchange preMasterSecret := make([]byte, 48) vers := clientHello.vers if bad == RSABadValueWrongVersion1 { vers ^= 1 } else if bad == RSABadValueWrongVersion2 { vers ^= 0x100 } preMasterSecret[0] = byte(vers >> 8) preMasterSecret[1] = byte(vers) _, err := io.ReadFull(config.rand(), preMasterSecret[2:]) if err != nil { return nil, nil, err } sentPreMasterSecret := preMasterSecret if bad == RSABadValueTooLong { sentPreMasterSecret = make([]byte, 1, len(sentPreMasterSecret)+1) sentPreMasterSecret = append(sentPreMasterSecret, preMasterSecret...) } else if bad == RSABadValueTooShort { sentPreMasterSecret = sentPreMasterSecret[:len(sentPreMasterSecret)-1] } // Pad for PKCS#1 v1.5. padded := make([]byte, rsaSize(cert.PublicKey.(*rsa.PublicKey))) padded[1] = 2 nonZeroRandomBytes(padded[2:len(padded)-len(sentPreMasterSecret)-1], config.rand()) copy(padded[len(padded)-len(sentPreMasterSecret):], sentPreMasterSecret) if bad == RSABadValueWrongBlockType { padded[1] = 3 } else if bad == RSABadValueWrongLeadingByte { padded[0] = 1 } else if bad == RSABadValueNoZero { for i := 2; i < len(padded); i++ { if padded[i] == 0 { padded[i]++ } } } encrypted, err := rsaRawEncrypt(cert.PublicKey.(*rsa.PublicKey), padded) if err != nil { return nil, nil, err } if bad == RSABadValueCorrupt { encrypted[len(encrypted)-1] ^= 1 // Clear the high byte to ensure |encrypted| is still below the RSA modulus. encrypted[0] = 0 } ckx := new(clientKeyExchangeMsg) if ka.version != VersionSSL30 { ckx.ciphertext = make([]byte, len(encrypted)+2) ckx.ciphertext[0] = byte(len(encrypted) >> 8) ckx.ciphertext[1] = byte(len(encrypted)) copy(ckx.ciphertext[2:], encrypted) } else { ckx.ciphertext = encrypted } return preMasterSecret, ckx, nil } func (ka *rsaKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { return 0 } // A ecdhCurve is an instance of ECDH-style key agreement for TLS. type ecdhCurve interface { // offer generates a keypair using rand. It returns the encoded |publicKey|. offer(rand io.Reader) (publicKey []byte, err error) // accept responds to the |peerKey| generated by |offer| with the acceptor's // |publicKey|, and returns agreed-upon |preMasterSecret| to the acceptor. accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) // finish returns the computed |preMasterSecret|, given the |peerKey| // generated by |accept|. finish(peerKey []byte) (preMasterSecret []byte, err error) } // ellipticECDHCurve implements ecdhCurve with an elliptic.Curve. type ellipticECDHCurve struct { curve elliptic.Curve privateKey []byte sendCompressed bool } func (e *ellipticECDHCurve) offer(rand io.Reader) (publicKey []byte, err error) { var x, y *big.Int e.privateKey, x, y, err = elliptic.GenerateKey(e.curve, rand) if err != nil { return nil, err } ret := elliptic.Marshal(e.curve, x, y) if e.sendCompressed { l := (len(ret) - 1) / 2 tmp := make([]byte, 1+l) tmp[0] = byte(2 | y.Bit(0)) copy(tmp[1:], ret[1:1+l]) ret = tmp } return ret, nil } func (e *ellipticECDHCurve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) { publicKey, err = e.offer(rand) if err != nil { return nil, nil, err } preMasterSecret, err = e.finish(peerKey) if err != nil { return nil, nil, err } return } func (e *ellipticECDHCurve) finish(peerKey []byte) (preMasterSecret []byte, err error) { x, y := elliptic.Unmarshal(e.curve, peerKey) if x == nil { return nil, errors.New("tls: invalid peer key") } x, _ = e.curve.ScalarMult(x, y, e.privateKey) preMasterSecret = make([]byte, (e.curve.Params().BitSize+7)>>3) xBytes := x.Bytes() copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes) return preMasterSecret, nil } // x25519ECDHCurve implements ecdhCurve with X25519. type x25519ECDHCurve struct { privateKey [32]byte setHighBit bool } func (e *x25519ECDHCurve) offer(rand io.Reader) (publicKey []byte, err error) { _, err = io.ReadFull(rand, e.privateKey[:]) if err != nil { return } var out [32]byte curve25519.ScalarBaseMult(&out, &e.privateKey) if e.setHighBit { out[31] |= 0x80 } return out[:], nil } func (e *x25519ECDHCurve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) { publicKey, err = e.offer(rand) if err != nil { return nil, nil, err } preMasterSecret, err = e.finish(peerKey) if err != nil { return nil, nil, err } return } func (e *x25519ECDHCurve) finish(peerKey []byte) (preMasterSecret []byte, err error) { if len(peerKey) != 32 { return nil, errors.New("tls: invalid peer key") } var out, peerKeyCopy [32]byte copy(peerKeyCopy[:], peerKey) curve25519.ScalarMult(&out, &e.privateKey, &peerKeyCopy) // Per RFC 7748, reject the all-zero value in constant time. var zeros [32]byte if subtle.ConstantTimeCompare(zeros[:], out[:]) == 1 { return nil, errors.New("tls: X25519 value with wrong order") } return out[:], nil } // cecpq2Curve implements CECPQ2, which is HRSS+SXY combined with X25519. type cecpq2Curve struct { x25519PrivateKey [32]byte hrssPrivateKey hrss.PrivateKey } func (e *cecpq2Curve) offer(rand io.Reader) (publicKey []byte, err error) { if _, err := io.ReadFull(rand, e.x25519PrivateKey[:]); err != nil { return nil, err } var x25519Public [32]byte curve25519.ScalarBaseMult(&x25519Public, &e.x25519PrivateKey) e.hrssPrivateKey = hrss.GenerateKey(rand) hrssPublic := e.hrssPrivateKey.PublicKey.Marshal() var ret []byte ret = append(ret, x25519Public[:]...) ret = append(ret, hrssPublic...) return ret, nil } func (e *cecpq2Curve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) { if len(peerKey) != 32+hrss.PublicKeySize { return nil, nil, errors.New("tls: bad length CECPQ2 offer") } if _, err := io.ReadFull(rand, e.x25519PrivateKey[:]); err != nil { return nil, nil, err } var x25519Shared, x25519PeerKey, x25519Public [32]byte copy(x25519PeerKey[:], peerKey) curve25519.ScalarBaseMult(&x25519Public, &e.x25519PrivateKey) curve25519.ScalarMult(&x25519Shared, &e.x25519PrivateKey, &x25519PeerKey) // Per RFC 7748, reject the all-zero value in constant time. var zeros [32]byte if subtle.ConstantTimeCompare(zeros[:], x25519Shared[:]) == 1 { return nil, nil, errors.New("tls: X25519 value with wrong order") } hrssPublicKey, ok := hrss.ParsePublicKey(peerKey[32:]) if !ok { return nil, nil, errors.New("tls: bad CECPQ2 offer") } hrssCiphertext, hrssShared := hrssPublicKey.Encap(rand) publicKey = append(publicKey, x25519Public[:]...) publicKey = append(publicKey, hrssCiphertext...) preMasterSecret = append(preMasterSecret, x25519Shared[:]...) preMasterSecret = append(preMasterSecret, hrssShared...) return publicKey, preMasterSecret, nil } func (e *cecpq2Curve) finish(peerKey []byte) (preMasterSecret []byte, err error) { if len(peerKey) != 32+hrss.CiphertextSize { return nil, errors.New("tls: bad length CECPQ2 reply") } var x25519Shared, x25519PeerKey [32]byte copy(x25519PeerKey[:], peerKey) curve25519.ScalarMult(&x25519Shared, &e.x25519PrivateKey, &x25519PeerKey) // Per RFC 7748, reject the all-zero value in constant time. var zeros [32]byte if subtle.ConstantTimeCompare(zeros[:], x25519Shared[:]) == 1 { return nil, errors.New("tls: X25519 value with wrong order") } hrssShared, ok := e.hrssPrivateKey.Decap(peerKey[32:]) if !ok { return nil, errors.New("tls: invalid HRSS ciphertext") } preMasterSecret = append(preMasterSecret, x25519Shared[:]...) preMasterSecret = append(preMasterSecret, hrssShared...) return preMasterSecret, nil } // cecpq2BCurve implements CECPQ2b, which is SIKE combined with X25519. type cecpq2BCurve struct { // Both public key and shared secret size x25519PrivateKey [32]byte sikePrivateKey *sike.PrivateKey } func (e *cecpq2BCurve) offer(rand io.Reader) (publicKey []byte, err error) { if _, err = io.ReadFull(rand, e.x25519PrivateKey[:]); err != nil { return nil, err } var x25519Public [32]byte curve25519.ScalarBaseMult(&x25519Public, &e.x25519PrivateKey) e.sikePrivateKey = sike.NewPrivateKey(sike.KeyVariant_SIKE) if err = e.sikePrivateKey.Generate(rand); err != nil { return nil, err } sikePublic := e.sikePrivateKey.GeneratePublicKey().Export() var ret []byte ret = append(ret, x25519Public[:]...) ret = append(ret, sikePublic...) return ret, nil } func (e *cecpq2BCurve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) { if len(peerKey) != 32+sike.Params.PublicKeySize { return nil, nil, errors.New("tls: bad length CECPQ2b offer") } if _, err = io.ReadFull(rand, e.x25519PrivateKey[:]); err != nil { return nil, nil, err } var x25519Shared, x25519PeerKey, x25519Public [32]byte copy(x25519PeerKey[:], peerKey) curve25519.ScalarBaseMult(&x25519Public, &e.x25519PrivateKey) curve25519.ScalarMult(&x25519Shared, &e.x25519PrivateKey, &x25519PeerKey) // Per RFC 7748, reject the all-zero value in constant time. var zeros [32]byte if subtle.ConstantTimeCompare(zeros[:], x25519Shared[:]) == 1 { return nil, nil, errors.New("tls: X25519 value with wrong order") } var sikePubKey = sike.NewPublicKey(sike.KeyVariant_SIKE) if err = sikePubKey.Import(peerKey[32:]); err != nil { // should never happen as size was already checked return nil, nil, errors.New("tls: implementation error") } sikeCiphertext, sikeShared, err := sike.Encapsulate(rand, sikePubKey) if err != nil { return nil, nil, err } publicKey = append(publicKey, x25519Public[:]...) publicKey = append(publicKey, sikeCiphertext...) preMasterSecret = append(preMasterSecret, x25519Shared[:]...) preMasterSecret = append(preMasterSecret, sikeShared...) return publicKey, preMasterSecret, nil } func (e *cecpq2BCurve) finish(peerKey []byte) (preMasterSecret []byte, err error) { if len(peerKey) != 32+(sike.Params.PublicKeySize+sike.Params.MsgLen) { return nil, errors.New("tls: bad length CECPQ2b reply") } var x25519Shared, x25519PeerKey [32]byte copy(x25519PeerKey[:], peerKey) curve25519.ScalarMult(&x25519Shared, &e.x25519PrivateKey, &x25519PeerKey) // Per RFC 7748, reject the all-zero value in constant time. var zeros [32]byte if subtle.ConstantTimeCompare(zeros[:], x25519Shared[:]) == 1 { return nil, errors.New("tls: X25519 value with wrong order") } var sikePubKey = e.sikePrivateKey.GeneratePublicKey() sikeShared, err := sike.Decapsulate(e.sikePrivateKey, sikePubKey, peerKey[32:]) if err != nil { return nil, errors.New("tls: invalid SIKE ciphertext") } preMasterSecret = append(preMasterSecret, x25519Shared[:]...) preMasterSecret = append(preMasterSecret, sikeShared...) return preMasterSecret, nil } func curveForCurveID(id CurveID, config *Config) (ecdhCurve, bool) { switch id { case CurveP224: return &ellipticECDHCurve{curve: elliptic.P224(), sendCompressed: config.Bugs.SendCompressedCoordinates}, true case CurveP256: return &ellipticECDHCurve{curve: elliptic.P256(), sendCompressed: config.Bugs.SendCompressedCoordinates}, true case CurveP384: return &ellipticECDHCurve{curve: elliptic.P384(), sendCompressed: config.Bugs.SendCompressedCoordinates}, true case CurveP521: return &ellipticECDHCurve{curve: elliptic.P521(), sendCompressed: config.Bugs.SendCompressedCoordinates}, true case CurveX25519: return &x25519ECDHCurve{setHighBit: config.Bugs.SetX25519HighBit}, true case CurveCECPQ2: return &cecpq2Curve{}, true case CurveCECPQ2b: return &cecpq2BCurve{}, true default: return nil, false } } // keyAgreementAuthentication is a helper interface that specifies how // to authenticate the ServerKeyExchange parameters. type keyAgreementAuthentication interface { signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, key crypto.PublicKey, params []byte, sig []byte) error } // nilKeyAgreementAuthentication does not authenticate the key // agreement parameters. type nilKeyAgreementAuthentication struct{} func (ka *nilKeyAgreementAuthentication) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) { skx := new(serverKeyExchangeMsg) skx.key = params return skx, nil } func (ka *nilKeyAgreementAuthentication) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, key crypto.PublicKey, params []byte, sig []byte) error { return nil } // signedKeyAgreement signs the ServerKeyExchange parameters with the // server's private key. type signedKeyAgreement struct { keyType keyType version uint16 peerSignatureAlgorithm signatureAlgorithm } func (ka *signedKeyAgreement) signParameters(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, params []byte) (*serverKeyExchangeMsg, error) { // The message to be signed is prepended by the randoms. var msg []byte msg = append(msg, clientHello.random...) msg = append(msg, hello.random...) msg = append(msg, params...) var sigAlg signatureAlgorithm var err error if ka.version >= VersionTLS12 { sigAlg, err = selectSignatureAlgorithm(ka.version, cert.PrivateKey, config, clientHello.signatureAlgorithms) if err != nil { return nil, err } } sig, err := signMessage(ka.version, cert.PrivateKey, config, sigAlg, msg) if err != nil { return nil, err } if config.Bugs.SendSignatureAlgorithm != 0 { sigAlg = config.Bugs.SendSignatureAlgorithm } skx := new(serverKeyExchangeMsg) if config.Bugs.UnauthenticatedECDH { skx.key = params } else { sigAlgsLen := 0 if ka.version >= VersionTLS12 { sigAlgsLen = 2 } skx.key = make([]byte, len(params)+sigAlgsLen+2+len(sig)) copy(skx.key, params) k := skx.key[len(params):] if ka.version >= VersionTLS12 { k[0] = byte(sigAlg >> 8) k[1] = byte(sigAlg) k = k[2:] } k[0] = byte(len(sig) >> 8) k[1] = byte(len(sig)) copy(k[2:], sig) } return skx, nil } func (ka *signedKeyAgreement) verifyParameters(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, publicKey crypto.PublicKey, params []byte, sig []byte) error { // The peer's key must match the cipher type. switch ka.keyType { case keyTypeECDSA: _, edsaOk := publicKey.(*ecdsa.PublicKey) _, ed25519Ok := publicKey.(ed25519.PublicKey) if !edsaOk && !ed25519Ok { return errors.New("tls: ECDHE ECDSA requires a ECDSA or Ed25519 server public key") } case keyTypeRSA: _, ok := publicKey.(*rsa.PublicKey) if !ok { return errors.New("tls: ECDHE RSA requires a RSA server public key") } default: return errors.New("tls: unknown key type") } // The message to be signed is prepended by the randoms. var msg []byte msg = append(msg, clientHello.random...) msg = append(msg, serverHello.random...) msg = append(msg, params...) var sigAlg signatureAlgorithm if ka.version >= VersionTLS12 { if len(sig) < 2 { return errServerKeyExchange } sigAlg = signatureAlgorithm(sig[0])<<8 | signatureAlgorithm(sig[1]) sig = sig[2:] // Stash the signature algorithm to be extracted by the handshake. ka.peerSignatureAlgorithm = sigAlg } if len(sig) < 2 { return errServerKeyExchange } sigLen := int(sig[0])<<8 | int(sig[1]) if sigLen+2 != len(sig) { return errServerKeyExchange } sig = sig[2:] return verifyMessage(ka.version, publicKey, config, sigAlg, msg, sig) } // ecdheKeyAgreement implements a TLS key agreement where the server // generates a ephemeral EC public/private key pair and signs it. The // pre-master secret is then calculated using ECDH. The signature may // either be ECDSA or RSA. type ecdheKeyAgreement struct { auth keyAgreementAuthentication curve ecdhCurve curveID CurveID peerKey []byte } func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, version uint16) (*serverKeyExchangeMsg, error) { var curveid CurveID preferredCurves := config.curvePreferences() NextCandidate: for _, candidate := range preferredCurves { if isPqGroup(candidate) && version < VersionTLS13 { // CECPQ2 and CECPQ2b is TLS 1.3-only. continue } for _, c := range clientHello.supportedCurves { if candidate == c { curveid = c break NextCandidate } } } if curveid == 0 { return nil, errors.New("tls: no supported elliptic curves offered") } var ok bool if ka.curve, ok = curveForCurveID(curveid, config); !ok { return nil, errors.New("tls: preferredCurves includes unsupported curve") } ka.curveID = curveid publicKey, err := ka.curve.offer(config.rand()) if err != nil { return nil, err } // http://tools.ietf.org/html/rfc4492#section-5.4 serverECDHParams := make([]byte, 1+2+1+len(publicKey)) serverECDHParams[0] = 3 // named curve if config.Bugs.SendCurve != 0 { curveid = config.Bugs.SendCurve } serverECDHParams[1] = byte(curveid >> 8) serverECDHParams[2] = byte(curveid) serverECDHParams[3] = byte(len(publicKey)) copy(serverECDHParams[4:], publicKey) if config.Bugs.InvalidECDHPoint { serverECDHParams[4] ^= 0xff } return ka.auth.signParameters(config, cert, clientHello, hello, serverECDHParams) } func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 { return nil, errClientKeyExchange } return ka.curve.finish(ckx.ciphertext[1:]) } func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, key crypto.PublicKey, skx *serverKeyExchangeMsg) error { if len(skx.key) < 4 { return errServerKeyExchange } if skx.key[0] != 3 { // named curve return errors.New("tls: server selected unsupported curve") } curveid := CurveID(skx.key[1])<<8 | CurveID(skx.key[2]) ka.curveID = curveid var ok bool if ka.curve, ok = curveForCurveID(curveid, config); !ok { return errors.New("tls: server selected unsupported curve") } publicLen := int(skx.key[3]) if publicLen+4 > len(skx.key) { return errServerKeyExchange } // Save the peer key for later. ka.peerKey = skx.key[4 : 4+publicLen] // Check the signature. serverECDHParams := skx.key[:4+publicLen] sig := skx.key[4+publicLen:] return ka.auth.verifyParameters(config, clientHello, serverHello, key, serverECDHParams, sig) } func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { if ka.curve == nil { return nil, nil, errors.New("missing ServerKeyExchange message") } publicKey, preMasterSecret, err := ka.curve.accept(config.rand(), ka.peerKey) if err != nil { return nil, nil, err } ckx := new(clientKeyExchangeMsg) ckx.ciphertext = make([]byte, 1+len(publicKey)) ckx.ciphertext[0] = byte(len(publicKey)) copy(ckx.ciphertext[1:], publicKey) if config.Bugs.InvalidECDHPoint { ckx.ciphertext[1] ^= 0xff } return preMasterSecret, ckx, nil } func (ka *ecdheKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { if auth, ok := ka.auth.(*signedKeyAgreement); ok { return auth.peerSignatureAlgorithm } return 0 } // nilKeyAgreement is a fake key agreement used to implement the plain PSK key // exchange. type nilKeyAgreement struct{} func (ka *nilKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, version uint16) (*serverKeyExchangeMsg, error) { return nil, nil } func (ka *nilKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { if len(ckx.ciphertext) != 0 { return nil, errClientKeyExchange } // Although in plain PSK, otherSecret is all zeros, the base key // agreement does not access to the length of the pre-shared // key. pskKeyAgreement instead interprets nil to mean to use all zeros // of the appropriate length. return nil, nil } func (ka *nilKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, key crypto.PublicKey, skx *serverKeyExchangeMsg) error { if len(skx.key) != 0 { return errServerKeyExchange } return nil } func (ka *nilKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { // Although in plain PSK, otherSecret is all zeros, the base key // agreement does not access to the length of the pre-shared // key. pskKeyAgreement instead interprets nil to mean to use all zeros // of the appropriate length. return nil, &clientKeyExchangeMsg{}, nil } func (ka *nilKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { return 0 } // makePSKPremaster formats a PSK pre-master secret based on otherSecret from // the base key exchange and psk. func makePSKPremaster(otherSecret, psk []byte) []byte { out := make([]byte, 0, 2+len(otherSecret)+2+len(psk)) out = append(out, byte(len(otherSecret)>>8), byte(len(otherSecret))) out = append(out, otherSecret...) out = append(out, byte(len(psk)>>8), byte(len(psk))) out = append(out, psk...) return out } // pskKeyAgreement implements the PSK key agreement. type pskKeyAgreement struct { base keyAgreement identityHint string } func (ka *pskKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg, version uint16) (*serverKeyExchangeMsg, error) { // Assemble the identity hint. bytes := make([]byte, 2+len(config.PreSharedKeyIdentity)) bytes[0] = byte(len(config.PreSharedKeyIdentity) >> 8) bytes[1] = byte(len(config.PreSharedKeyIdentity)) copy(bytes[2:], []byte(config.PreSharedKeyIdentity)) // If there is one, append the base key agreement's // ServerKeyExchange. baseSkx, err := ka.base.generateServerKeyExchange(config, cert, clientHello, hello, version) if err != nil { return nil, err } if baseSkx != nil { bytes = append(bytes, baseSkx.key...) } else if config.PreSharedKeyIdentity == "" && !config.Bugs.AlwaysSendPreSharedKeyIdentityHint { // ServerKeyExchange is optional if the identity hint is empty // and there would otherwise be no ServerKeyExchange. return nil, nil } skx := new(serverKeyExchangeMsg) skx.key = bytes return skx, nil } func (ka *pskKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { // First, process the PSK identity. if len(ckx.ciphertext) < 2 { return nil, errClientKeyExchange } identityLen := (int(ckx.ciphertext[0]) << 8) | int(ckx.ciphertext[1]) if 2+identityLen > len(ckx.ciphertext) { return nil, errClientKeyExchange } identity := string(ckx.ciphertext[2 : 2+identityLen]) if identity != config.PreSharedKeyIdentity { return nil, errors.New("tls: unexpected identity") } if config.PreSharedKey == nil { return nil, errors.New("tls: pre-shared key not configured") } // Process the remainder of the ClientKeyExchange to compute the base // pre-master secret. newCkx := new(clientKeyExchangeMsg) newCkx.ciphertext = ckx.ciphertext[2+identityLen:] otherSecret, err := ka.base.processClientKeyExchange(config, cert, newCkx, version) if err != nil { return nil, err } if otherSecret == nil { // Special-case for the plain PSK key exchanges. otherSecret = make([]byte, len(config.PreSharedKey)) } return makePSKPremaster(otherSecret, config.PreSharedKey), nil } func (ka *pskKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, key crypto.PublicKey, skx *serverKeyExchangeMsg) error { if len(skx.key) < 2 { return errServerKeyExchange } identityLen := (int(skx.key[0]) << 8) | int(skx.key[1]) if 2+identityLen > len(skx.key) { return errServerKeyExchange } ka.identityHint = string(skx.key[2 : 2+identityLen]) // Process the remainder of the ServerKeyExchange. newSkx := new(serverKeyExchangeMsg) newSkx.key = skx.key[2+identityLen:] return ka.base.processServerKeyExchange(config, clientHello, serverHello, key, newSkx) } func (ka *pskKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { // The server only sends an identity hint but, for purposes of // test code, the server always sends the hint and it is // required to match. if ka.identityHint != config.PreSharedKeyIdentity { return nil, nil, errors.New("tls: unexpected identity") } // Serialize the identity. bytes := make([]byte, 2+len(config.PreSharedKeyIdentity)) bytes[0] = byte(len(config.PreSharedKeyIdentity) >> 8) bytes[1] = byte(len(config.PreSharedKeyIdentity)) copy(bytes[2:], []byte(config.PreSharedKeyIdentity)) // Append the base key exchange's ClientKeyExchange. otherSecret, baseCkx, err := ka.base.generateClientKeyExchange(config, clientHello, cert) if err != nil { return nil, nil, err } ckx := new(clientKeyExchangeMsg) ckx.ciphertext = append(bytes, baseCkx.ciphertext...) if config.PreSharedKey == nil { return nil, nil, errors.New("tls: pre-shared key not configured") } if otherSecret == nil { otherSecret = make([]byte, len(config.PreSharedKey)) } return makePSKPremaster(otherSecret, config.PreSharedKey), ckx, nil } func (ka *pskKeyAgreement) peerSignatureAlgorithm() signatureAlgorithm { return 0 }