/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/gain_controller2.h" #include #include #include "common_audio/include/audio_util.h" #include "modules/audio_processing/agc2/cpu_features.h" #include "modules/audio_processing/audio_buffer.h" #include "modules/audio_processing/include/audio_frame_view.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/atomic_ops.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/strings/string_builder.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { using Agc2Config = AudioProcessing::Config::GainController2; constexpr int kUnspecifiedAnalogLevel = -1; constexpr int kLogLimiterStatsPeriodMs = 30'000; constexpr int kFrameLengthMs = 10; constexpr int kLogLimiterStatsPeriodNumFrames = kLogLimiterStatsPeriodMs / kFrameLengthMs; // Detects the available CPU features and applies any kill-switches. AvailableCpuFeatures GetAllowedCpuFeatures() { AvailableCpuFeatures features = GetAvailableCpuFeatures(); if (field_trial::IsEnabled("WebRTC-Agc2SimdSse2KillSwitch")) { features.sse2 = false; } if (field_trial::IsEnabled("WebRTC-Agc2SimdAvx2KillSwitch")) { features.avx2 = false; } if (field_trial::IsEnabled("WebRTC-Agc2SimdNeonKillSwitch")) { features.neon = false; } return features; } // Creates an adaptive digital gain controller if enabled. std::unique_ptr CreateAdaptiveDigitalController( const Agc2Config::AdaptiveDigital& config, int sample_rate_hz, int num_channels, ApmDataDumper* data_dumper) { if (config.enabled) { return std::make_unique( data_dumper, config, sample_rate_hz, num_channels); } return nullptr; } } // namespace int GainController2::instance_count_ = 0; GainController2::GainController2(const Agc2Config& config, int sample_rate_hz, int num_channels) : cpu_features_(GetAllowedCpuFeatures()), data_dumper_(rtc::AtomicOps::Increment(&instance_count_)), fixed_gain_applier_( /*hard_clip_samples=*/false, /*initial_gain_factor=*/DbToRatio(config.fixed_digital.gain_db)), adaptive_digital_controller_( CreateAdaptiveDigitalController(config.adaptive_digital, sample_rate_hz, num_channels, &data_dumper_)), limiter_(sample_rate_hz, &data_dumper_, /*histogram_name_prefix=*/"Agc2"), calls_since_last_limiter_log_(0), analog_level_(kUnspecifiedAnalogLevel) { RTC_DCHECK(Validate(config)); data_dumper_.InitiateNewSetOfRecordings(); const bool use_vad = config.adaptive_digital.enabled; if (use_vad) { // TODO(bugs.webrtc.org/7494): Move `vad_reset_period_ms` from adaptive // digital to gain controller 2 config. vad_ = std::make_unique( config.adaptive_digital.vad_reset_period_ms, cpu_features_, sample_rate_hz); } } GainController2::~GainController2() = default; void GainController2::Initialize(int sample_rate_hz, int num_channels) { RTC_DCHECK(sample_rate_hz == AudioProcessing::kSampleRate8kHz || sample_rate_hz == AudioProcessing::kSampleRate16kHz || sample_rate_hz == AudioProcessing::kSampleRate32kHz || sample_rate_hz == AudioProcessing::kSampleRate48kHz); // TODO(bugs.webrtc.org/7494): Initialize `fixed_gain_applier_`. limiter_.SetSampleRate(sample_rate_hz); if (vad_) { vad_->Initialize(sample_rate_hz); } if (adaptive_digital_controller_) { adaptive_digital_controller_->Initialize(sample_rate_hz, num_channels); } data_dumper_.InitiateNewSetOfRecordings(); calls_since_last_limiter_log_ = 0; analog_level_ = kUnspecifiedAnalogLevel; } void GainController2::SetFixedGainDb(float gain_db) { const float gain_factor = DbToRatio(gain_db); if (fixed_gain_applier_.GetGainFactor() != gain_factor) { // Reset the limiter to quickly react on abrupt level changes caused by // large changes of the fixed gain. limiter_.Reset(); } fixed_gain_applier_.SetGainFactor(gain_factor); } void GainController2::Process(AudioBuffer* audio) { data_dumper_.DumpRaw("agc2_notified_analog_level", analog_level_); AudioFrameView float_frame(audio->channels(), audio->num_channels(), audio->num_frames()); absl::optional speech_probability; if (vad_) { speech_probability = vad_->Analyze(float_frame); data_dumper_.DumpRaw("agc2_speech_probability", speech_probability.value()); } fixed_gain_applier_.ApplyGain(float_frame); if (adaptive_digital_controller_) { RTC_DCHECK(speech_probability.has_value()); adaptive_digital_controller_->Process( float_frame, speech_probability.value(), limiter_.LastAudioLevel()); } limiter_.Process(float_frame); // Periodically log limiter stats. if (++calls_since_last_limiter_log_ == kLogLimiterStatsPeriodNumFrames) { calls_since_last_limiter_log_ = 0; InterpolatedGainCurve::Stats stats = limiter_.GetGainCurveStats(); RTC_LOG(LS_INFO) << "AGC2 limiter stats" << " | identity: " << stats.look_ups_identity_region << " | knee: " << stats.look_ups_knee_region << " | limiter: " << stats.look_ups_limiter_region << " | saturation: " << stats.look_ups_saturation_region; } } void GainController2::NotifyAnalogLevel(int level) { if (analog_level_ != level && adaptive_digital_controller_) { adaptive_digital_controller_->HandleInputGainChange(); } analog_level_ = level; } bool GainController2::Validate( const AudioProcessing::Config::GainController2& config) { const auto& fixed = config.fixed_digital; const auto& adaptive = config.adaptive_digital; return fixed.gain_db >= 0.0f && fixed.gain_db < 50.f && adaptive.headroom_db >= 0.0f && adaptive.max_gain_db > 0.0f && adaptive.initial_gain_db >= 0.0f && adaptive.max_gain_change_db_per_second > 0.0f && adaptive.max_output_noise_level_dbfs <= 0.0f; } } // namespace webrtc