/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/encoder_bitrate_adjuster.h" #include #include #include #include "rtc_base/experiments/rate_control_settings.h" #include "rtc_base/logging.h" #include "rtc_base/time_utils.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { // Helper struct with metadata for a single spatial layer. struct LayerRateInfo { double link_utilization_factor = 0.0; double media_utilization_factor = 0.0; DataRate target_rate = DataRate::Zero(); DataRate WantedOvershoot() const { // If there is headroom, allow bitrate to go up to media rate limit. // Still limit media utilization to 1.0, so we don't overshoot over long // runs even if we have headroom. const double max_media_utilization = std::max(1.0, media_utilization_factor); if (link_utilization_factor > max_media_utilization) { return (link_utilization_factor - max_media_utilization) * target_rate; } return DataRate::Zero(); } }; } // namespace constexpr int64_t EncoderBitrateAdjuster::kWindowSizeMs; constexpr size_t EncoderBitrateAdjuster::kMinFramesSinceLayoutChange; constexpr double EncoderBitrateAdjuster::kDefaultUtilizationFactor; EncoderBitrateAdjuster::EncoderBitrateAdjuster(const VideoCodec& codec_settings) : utilize_bandwidth_headroom_(RateControlSettings::ParseFromFieldTrials() .BitrateAdjusterCanUseNetworkHeadroom()), frames_since_layout_change_(0), min_bitrates_bps_{} { if (codec_settings.codecType == VideoCodecType::kVideoCodecVP9) { for (size_t si = 0; si < codec_settings.VP9().numberOfSpatialLayers; ++si) { if (codec_settings.spatialLayers[si].active) { min_bitrates_bps_[si] = std::max(codec_settings.minBitrate * 1000, codec_settings.spatialLayers[si].minBitrate * 1000); } } } else { for (size_t si = 0; si < codec_settings.numberOfSimulcastStreams; ++si) { if (codec_settings.simulcastStream[si].active) { min_bitrates_bps_[si] = std::max(codec_settings.minBitrate * 1000, codec_settings.simulcastStream[si].minBitrate * 1000); } } } } EncoderBitrateAdjuster::~EncoderBitrateAdjuster() = default; VideoBitrateAllocation EncoderBitrateAdjuster::AdjustRateAllocation( const VideoEncoder::RateControlParameters& rates) { current_rate_control_parameters_ = rates; // First check that overshoot detectors exist, and store per spatial layer // how many active temporal layers we have. size_t active_tls_[kMaxSpatialLayers] = {}; for (size_t si = 0; si < kMaxSpatialLayers; ++si) { active_tls_[si] = 0; for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { // Layer is enabled iff it has both positive bitrate and framerate target. if (rates.bitrate.GetBitrate(si, ti) > 0 && current_fps_allocation_[si].size() > ti && current_fps_allocation_[si][ti] > 0) { ++active_tls_[si]; if (!overshoot_detectors_[si][ti]) { overshoot_detectors_[si][ti] = std::make_unique(kWindowSizeMs); frames_since_layout_change_ = 0; } } else if (overshoot_detectors_[si][ti]) { // Layer removed, destroy overshoot detector. overshoot_detectors_[si][ti].reset(); frames_since_layout_change_ = 0; } } } // Next poll the overshoot detectors and populate the adjusted allocation. const int64_t now_ms = rtc::TimeMillis(); VideoBitrateAllocation adjusted_allocation; std::vector layer_infos; DataRate wanted_overshoot_sum = DataRate::Zero(); for (size_t si = 0; si < kMaxSpatialLayers; ++si) { layer_infos.emplace_back(); LayerRateInfo& layer_info = layer_infos.back(); layer_info.target_rate = DataRate::BitsPerSec(rates.bitrate.GetSpatialLayerSum(si)); // Adjustment is done per spatial layer only (not per temporal layer). if (frames_since_layout_change_ < kMinFramesSinceLayoutChange) { layer_info.link_utilization_factor = kDefaultUtilizationFactor; layer_info.media_utilization_factor = kDefaultUtilizationFactor; } else if (active_tls_[si] == 0 || layer_info.target_rate == DataRate::Zero()) { // No signaled temporal layers, or no bitrate set. Could either be unused // spatial layer or bitrate dynamic mode; pass bitrate through without any // change. layer_info.link_utilization_factor = 1.0; layer_info.media_utilization_factor = 1.0; } else if (active_tls_[si] == 1) { // A single active temporal layer, this might mean single layer or that // encoder does not support temporal layers. Merge target bitrates for // this spatial layer. RTC_DCHECK(overshoot_detectors_[si][0]); layer_info.link_utilization_factor = overshoot_detectors_[si][0] ->GetNetworkRateUtilizationFactor(now_ms) .value_or(kDefaultUtilizationFactor); layer_info.media_utilization_factor = overshoot_detectors_[si][0] ->GetMediaRateUtilizationFactor(now_ms) .value_or(kDefaultUtilizationFactor); } else if (layer_info.target_rate > DataRate::Zero()) { // Multiple temporal layers enabled for this spatial layer. Update rate // for each of them and make a weighted average of utilization factors, // with bitrate fraction used as weight. // If any layer is missing a utilization factor, fall back to default. layer_info.link_utilization_factor = 0.0; layer_info.media_utilization_factor = 0.0; for (size_t ti = 0; ti < active_tls_[si]; ++ti) { RTC_DCHECK(overshoot_detectors_[si][ti]); const absl::optional ti_link_utilization_factor = overshoot_detectors_[si][ti]->GetNetworkRateUtilizationFactor( now_ms); const absl::optional ti_media_utilization_factor = overshoot_detectors_[si][ti]->GetMediaRateUtilizationFactor(now_ms); if (!ti_link_utilization_factor || !ti_media_utilization_factor) { layer_info.link_utilization_factor = kDefaultUtilizationFactor; layer_info.media_utilization_factor = kDefaultUtilizationFactor; break; } const double weight = static_cast(rates.bitrate.GetBitrate(si, ti)) / layer_info.target_rate.bps(); layer_info.link_utilization_factor += weight * ti_link_utilization_factor.value(); layer_info.media_utilization_factor += weight * ti_media_utilization_factor.value(); } } else { RTC_DCHECK_NOTREACHED(); } if (layer_info.link_utilization_factor < 1.0) { // TODO(sprang): Consider checking underuse and allowing it to cancel some // potential overuse by other streams. // Don't boost target bitrate if encoder is under-using. layer_info.link_utilization_factor = 1.0; } else { // Don't reduce encoder target below 50%, in which case the frame dropper // should kick in instead. layer_info.link_utilization_factor = std::min(layer_info.link_utilization_factor, 2.0); // Keep track of sum of desired overshoot bitrate. wanted_overshoot_sum += layer_info.WantedOvershoot(); } } // Available link headroom that can be used to fill wanted overshoot. DataRate available_headroom = DataRate::Zero(); if (utilize_bandwidth_headroom_) { available_headroom = rates.bandwidth_allocation - DataRate::BitsPerSec(rates.bitrate.get_sum_bps()); } // All wanted overshoots are satisfied in the same proportion based on // available headroom. const double granted_overshoot_ratio = wanted_overshoot_sum == DataRate::Zero() ? 0.0 : std::min(1.0, available_headroom.bps() / wanted_overshoot_sum.bps()); for (size_t si = 0; si < kMaxSpatialLayers; ++si) { LayerRateInfo& layer_info = layer_infos[si]; double utilization_factor = layer_info.link_utilization_factor; DataRate allowed_overshoot = granted_overshoot_ratio * layer_info.WantedOvershoot(); if (allowed_overshoot > DataRate::Zero()) { // Pretend the target bitrate is higher by the allowed overshoot. // Since utilization_factor = actual_bitrate / target_bitrate, it can be // done by multiplying by old_target_bitrate / new_target_bitrate. utilization_factor *= layer_info.target_rate.bps() / (allowed_overshoot.bps() + layer_info.target_rate.bps()); } if (min_bitrates_bps_[si] > 0 && layer_info.target_rate > DataRate::Zero() && DataRate::BitsPerSec(min_bitrates_bps_[si]) < layer_info.target_rate) { // Make sure rate adjuster doesn't push target bitrate below minimum. utilization_factor = std::min(utilization_factor, layer_info.target_rate.bps() / min_bitrates_bps_[si]); } if (layer_info.target_rate > DataRate::Zero()) { RTC_LOG(LS_VERBOSE) << "Utilization factors for spatial index " << si << ": link = " << layer_info.link_utilization_factor << ", media = " << layer_info.media_utilization_factor << ", wanted overshoot = " << layer_info.WantedOvershoot().bps() << " bps, available headroom = " << available_headroom.bps() << " bps, total utilization factor = " << utilization_factor; } // Populate the adjusted allocation with determined utilization factor. if (active_tls_[si] == 1 && layer_info.target_rate > DataRate::BitsPerSec(rates.bitrate.GetBitrate(si, 0))) { // Bitrate allocation indicates temporal layer usage, but encoder // does not seem to support it. Pipe all bitrate into a single // overshoot detector. uint32_t adjusted_layer_bitrate_bps = std::min(static_cast( layer_info.target_rate.bps() / utilization_factor + 0.5), layer_info.target_rate.bps()); adjusted_allocation.SetBitrate(si, 0, adjusted_layer_bitrate_bps); } else { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { if (rates.bitrate.HasBitrate(si, ti)) { uint32_t adjusted_layer_bitrate_bps = std::min( static_cast( rates.bitrate.GetBitrate(si, ti) / utilization_factor + 0.5), rates.bitrate.GetBitrate(si, ti)); adjusted_allocation.SetBitrate(si, ti, adjusted_layer_bitrate_bps); } } } // In case of rounding errors, add bitrate to TL0 until min bitrate // constraint has been met. const uint32_t adjusted_spatial_layer_sum = adjusted_allocation.GetSpatialLayerSum(si); if (layer_info.target_rate > DataRate::Zero() && adjusted_spatial_layer_sum < min_bitrates_bps_[si]) { adjusted_allocation.SetBitrate(si, 0, adjusted_allocation.GetBitrate(si, 0) + min_bitrates_bps_[si] - adjusted_spatial_layer_sum); } // Update all detectors with the new adjusted bitrate targets. for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { const uint32_t layer_bitrate_bps = adjusted_allocation.GetBitrate(si, ti); // Overshoot detector may not exist, eg for ScreenshareLayers case. if (layer_bitrate_bps > 0 && overshoot_detectors_[si][ti]) { // Number of frames in this layer alone is not cumulative, so // subtract fps from any low temporal layer. const double fps_fraction = static_cast( current_fps_allocation_[si][ti] - (ti == 0 ? 0 : current_fps_allocation_[si][ti - 1])) / VideoEncoder::EncoderInfo::kMaxFramerateFraction; if (fps_fraction <= 0.0) { RTC_LOG(LS_WARNING) << "Encoder config has temporal layer with non-zero bitrate " "allocation but zero framerate allocation."; continue; } overshoot_detectors_[si][ti]->SetTargetRate( DataRate::BitsPerSec(layer_bitrate_bps), fps_fraction * rates.framerate_fps, now_ms); } } } // Since no spatial layers or streams are toggled by the adjustment // bw-limited flag stays the same. adjusted_allocation.set_bw_limited(rates.bitrate.is_bw_limited()); return adjusted_allocation; } void EncoderBitrateAdjuster::OnEncoderInfo( const VideoEncoder::EncoderInfo& encoder_info) { // Copy allocation into current state and re-allocate. for (size_t si = 0; si < kMaxSpatialLayers; ++si) { current_fps_allocation_[si] = encoder_info.fps_allocation[si]; } // Trigger re-allocation so that overshoot detectors have correct targets. AdjustRateAllocation(current_rate_control_parameters_); } void EncoderBitrateAdjuster::OnEncodedFrame(DataSize size, int spatial_index, int temporal_index) { ++frames_since_layout_change_; // Detectors may not exist, for instance if ScreenshareLayers is used. auto& detector = overshoot_detectors_[spatial_index][temporal_index]; if (detector) { detector->OnEncodedFrame(size.bytes(), rtc::TimeMillis()); } } void EncoderBitrateAdjuster::Reset() { for (size_t si = 0; si < kMaxSpatialLayers; ++si) { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { overshoot_detectors_[si][ti].reset(); } } // Call AdjustRateAllocation() with the last know bitrate allocation, so that // the appropriate overuse detectors are immediately re-created. AdjustRateAllocation(current_rate_control_parameters_); } } // namespace webrtc