// Copyright 2010 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // main entry for the decoder // // Author: Skal (pascal.massimino@gmail.com) #include #include "./alphai.h" #include "./vp8i.h" #include "./vp8li.h" #include "./webpi.h" #include "../utils/bit_reader_inl.h" #include "../utils/utils.h" //------------------------------------------------------------------------------ int WebPGetDecoderVersion(void) { return (DEC_MAJ_VERSION << 16) | (DEC_MIN_VERSION << 8) | DEC_REV_VERSION; } //------------------------------------------------------------------------------ // VP8Decoder static void SetOk(VP8Decoder* const dec) { dec->status_ = VP8_STATUS_OK; dec->error_msg_ = "OK"; } int VP8InitIoInternal(VP8Io* const io, int version) { if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) { return 0; // mismatch error } if (io != NULL) { memset(io, 0, sizeof(*io)); } return 1; } VP8Decoder* VP8New(void) { VP8Decoder* const dec = (VP8Decoder*)WebPSafeCalloc(1ULL, sizeof(*dec)); if (dec != NULL) { SetOk(dec); WebPGetWorkerInterface()->Init(&dec->worker_); dec->ready_ = 0; dec->num_parts_ = 1; } return dec; } VP8StatusCode VP8Status(VP8Decoder* const dec) { if (!dec) return VP8_STATUS_INVALID_PARAM; return dec->status_; } const char* VP8StatusMessage(VP8Decoder* const dec) { if (dec == NULL) return "no object"; if (!dec->error_msg_) return "OK"; return dec->error_msg_; } void VP8Delete(VP8Decoder* const dec) { if (dec != NULL) { VP8Clear(dec); WebPSafeFree(dec); } } int VP8SetError(VP8Decoder* const dec, VP8StatusCode error, const char* const msg) { // TODO This check would be unnecessary if alpha decompression was separated // from VP8ProcessRow/FinishRow. This avoids setting 'dec->status_' to // something other than VP8_STATUS_BITSTREAM_ERROR on alpha decompression // failure. if (dec->status_ == VP8_STATUS_OK) { dec->status_ = error; dec->error_msg_ = msg; dec->ready_ = 0; } return 0; } //------------------------------------------------------------------------------ int VP8CheckSignature(const uint8_t* const data, size_t data_size) { return (data_size >= 3 && data[0] == 0x9d && data[1] == 0x01 && data[2] == 0x2a); } int VP8GetInfo(const uint8_t* data, size_t data_size, size_t chunk_size, int* const width, int* const height) { if (data == NULL || data_size < VP8_FRAME_HEADER_SIZE) { return 0; // not enough data } // check signature if (!VP8CheckSignature(data + 3, data_size - 3)) { return 0; // Wrong signature. } else { const uint32_t bits = data[0] | (data[1] << 8) | (data[2] << 16); const int key_frame = !(bits & 1); const int w = ((data[7] << 8) | data[6]) & 0x3fff; const int h = ((data[9] << 8) | data[8]) & 0x3fff; if (!key_frame) { // Not a keyframe. return 0; } if (((bits >> 1) & 7) > 3) { return 0; // unknown profile } if (!((bits >> 4) & 1)) { return 0; // first frame is invisible! } if (((bits >> 5)) >= chunk_size) { // partition_length return 0; // inconsistent size information. } if (w == 0 || h == 0) { return 0; // We don't support both width and height to be zero. } if (width) { *width = w; } if (height) { *height = h; } return 1; } } //------------------------------------------------------------------------------ // Header parsing static void ResetSegmentHeader(VP8SegmentHeader* const hdr) { assert(hdr != NULL); hdr->use_segment_ = 0; hdr->update_map_ = 0; hdr->absolute_delta_ = 1; memset(hdr->quantizer_, 0, sizeof(hdr->quantizer_)); memset(hdr->filter_strength_, 0, sizeof(hdr->filter_strength_)); } // Paragraph 9.3 static int ParseSegmentHeader(VP8BitReader* br, VP8SegmentHeader* hdr, VP8Proba* proba) { assert(br != NULL); assert(hdr != NULL); hdr->use_segment_ = VP8Get(br); if (hdr->use_segment_) { hdr->update_map_ = VP8Get(br); if (VP8Get(br)) { // update data int s; hdr->absolute_delta_ = VP8Get(br); for (s = 0; s < NUM_MB_SEGMENTS; ++s) { hdr->quantizer_[s] = VP8Get(br) ? VP8GetSignedValue(br, 7) : 0; } for (s = 0; s < NUM_MB_SEGMENTS; ++s) { hdr->filter_strength_[s] = VP8Get(br) ? VP8GetSignedValue(br, 6) : 0; } } if (hdr->update_map_) { int s; for (s = 0; s < MB_FEATURE_TREE_PROBS; ++s) { proba->segments_[s] = VP8Get(br) ? VP8GetValue(br, 8) : 255u; } } } else { hdr->update_map_ = 0; } return !br->eof_; } // Paragraph 9.5 // This function returns VP8_STATUS_SUSPENDED if we don't have all the // necessary data in 'buf'. // This case is not necessarily an error (for incremental decoding). // Still, no bitreader is ever initialized to make it possible to read // unavailable memory. // If we don't even have the partitions' sizes, than VP8_STATUS_NOT_ENOUGH_DATA // is returned, and this is an unrecoverable error. // If the partitions were positioned ok, VP8_STATUS_OK is returned. static VP8StatusCode ParsePartitions(VP8Decoder* const dec, const uint8_t* buf, size_t size) { VP8BitReader* const br = &dec->br_; const uint8_t* sz = buf; const uint8_t* buf_end = buf + size; const uint8_t* part_start; int last_part; int p; dec->num_parts_ = 1 << VP8GetValue(br, 2); last_part = dec->num_parts_ - 1; part_start = buf + last_part * 3; if (buf_end < part_start) { // we can't even read the sizes with sz[]! That's a failure. return VP8_STATUS_NOT_ENOUGH_DATA; } for (p = 0; p < last_part; ++p) { const uint32_t psize = sz[0] | (sz[1] << 8) | (sz[2] << 16); const uint8_t* part_end = part_start + psize; if (part_end > buf_end) part_end = buf_end; VP8InitBitReader(dec->parts_ + p, part_start, part_end); part_start = part_end; sz += 3; } VP8InitBitReader(dec->parts_ + last_part, part_start, buf_end); return (part_start < buf_end) ? VP8_STATUS_OK : VP8_STATUS_SUSPENDED; // Init is ok, but there's not enough data } // Paragraph 9.4 static int ParseFilterHeader(VP8BitReader* br, VP8Decoder* const dec) { VP8FilterHeader* const hdr = &dec->filter_hdr_; hdr->simple_ = VP8Get(br); hdr->level_ = VP8GetValue(br, 6); hdr->sharpness_ = VP8GetValue(br, 3); hdr->use_lf_delta_ = VP8Get(br); if (hdr->use_lf_delta_) { if (VP8Get(br)) { // update lf-delta? int i; for (i = 0; i < NUM_REF_LF_DELTAS; ++i) { if (VP8Get(br)) { hdr->ref_lf_delta_[i] = VP8GetSignedValue(br, 6); } } for (i = 0; i < NUM_MODE_LF_DELTAS; ++i) { if (VP8Get(br)) { hdr->mode_lf_delta_[i] = VP8GetSignedValue(br, 6); } } } } dec->filter_type_ = (hdr->level_ == 0) ? 0 : hdr->simple_ ? 1 : 2; return !br->eof_; } // Topmost call int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io) { const uint8_t* buf; size_t buf_size; VP8FrameHeader* frm_hdr; VP8PictureHeader* pic_hdr; VP8BitReader* br; VP8StatusCode status; if (dec == NULL) { return 0; } SetOk(dec); if (io == NULL) { return VP8SetError(dec, VP8_STATUS_INVALID_PARAM, "null VP8Io passed to VP8GetHeaders()"); } buf = io->data; buf_size = io->data_size; if (buf_size < 4) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "Truncated header."); } // Paragraph 9.1 { const uint32_t bits = buf[0] | (buf[1] << 8) | (buf[2] << 16); frm_hdr = &dec->frm_hdr_; frm_hdr->key_frame_ = !(bits & 1); frm_hdr->profile_ = (bits >> 1) & 7; frm_hdr->show_ = (bits >> 4) & 1; frm_hdr->partition_length_ = (bits >> 5); if (frm_hdr->profile_ > 3) return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "Incorrect keyframe parameters."); if (!frm_hdr->show_) return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE, "Frame not displayable."); buf += 3; buf_size -= 3; } pic_hdr = &dec->pic_hdr_; if (frm_hdr->key_frame_) { // Paragraph 9.2 if (buf_size < 7) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "cannot parse picture header"); } if (!VP8CheckSignature(buf, buf_size)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "Bad code word"); } pic_hdr->width_ = ((buf[4] << 8) | buf[3]) & 0x3fff; pic_hdr->xscale_ = buf[4] >> 6; // ratio: 1, 5/4 5/3 or 2 pic_hdr->height_ = ((buf[6] << 8) | buf[5]) & 0x3fff; pic_hdr->yscale_ = buf[6] >> 6; buf += 7; buf_size -= 7; dec->mb_w_ = (pic_hdr->width_ + 15) >> 4; dec->mb_h_ = (pic_hdr->height_ + 15) >> 4; // Setup default output area (can be later modified during io->setup()) io->width = pic_hdr->width_; io->height = pic_hdr->height_; io->use_scaling = 0; io->use_cropping = 0; io->crop_top = 0; io->crop_left = 0; io->crop_right = io->width; io->crop_bottom = io->height; io->mb_w = io->width; // sanity check io->mb_h = io->height; // ditto VP8ResetProba(&dec->proba_); ResetSegmentHeader(&dec->segment_hdr_); } // Check if we have all the partition #0 available, and initialize dec->br_ // to read this partition (and this partition only). if (frm_hdr->partition_length_ > buf_size) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "bad partition length"); } br = &dec->br_; VP8InitBitReader(br, buf, buf + frm_hdr->partition_length_); buf += frm_hdr->partition_length_; buf_size -= frm_hdr->partition_length_; if (frm_hdr->key_frame_) { pic_hdr->colorspace_ = VP8Get(br); pic_hdr->clamp_type_ = VP8Get(br); } if (!ParseSegmentHeader(br, &dec->segment_hdr_, &dec->proba_)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "cannot parse segment header"); } // Filter specs if (!ParseFilterHeader(br, dec)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "cannot parse filter header"); } status = ParsePartitions(dec, buf, buf_size); if (status != VP8_STATUS_OK) { return VP8SetError(dec, status, "cannot parse partitions"); } // quantizer change VP8ParseQuant(dec); // Frame buffer marking if (!frm_hdr->key_frame_) { return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE, "Not a key frame."); } VP8Get(br); // ignore the value of update_proba_ VP8ParseProba(br, dec); // sanitized state dec->ready_ = 1; return 1; } //------------------------------------------------------------------------------ // Residual decoding (Paragraph 13.2 / 13.3) static const int kBands[16 + 1] = { 0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0 // extra entry as sentinel }; static const uint8_t kCat3[] = { 173, 148, 140, 0 }; static const uint8_t kCat4[] = { 176, 155, 140, 135, 0 }; static const uint8_t kCat5[] = { 180, 157, 141, 134, 130, 0 }; static const uint8_t kCat6[] = { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0 }; static const uint8_t* const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 }; static const uint8_t kZigzag[16] = { 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 }; // See section 13-2: http://tools.ietf.org/html/rfc6386#section-13.2 static int GetLargeValue(VP8BitReader* const br, const uint8_t* const p) { int v; if (!VP8GetBit(br, p[3])) { if (!VP8GetBit(br, p[4])) { v = 2; } else { v = 3 + VP8GetBit(br, p[5]); } } else { if (!VP8GetBit(br, p[6])) { if (!VP8GetBit(br, p[7])) { v = 5 + VP8GetBit(br, 159); } else { v = 7 + 2 * VP8GetBit(br, 165); v += VP8GetBit(br, 145); } } else { const uint8_t* tab; const int bit1 = VP8GetBit(br, p[8]); const int bit0 = VP8GetBit(br, p[9 + bit1]); const int cat = 2 * bit1 + bit0; v = 0; for (tab = kCat3456[cat]; *tab; ++tab) { v += v + VP8GetBit(br, *tab); } v += 3 + (8 << cat); } } return v; } // Returns the position of the last non-zero coeff plus one static int GetCoeffs(VP8BitReader* const br, const VP8BandProbas* const prob, int ctx, const quant_t dq, int n, int16_t* out) { // n is either 0 or 1 here. kBands[n] is not necessary for extracting '*p'. const uint8_t* p = prob[n].probas_[ctx]; for (; n < 16; ++n) { if (!VP8GetBit(br, p[0])) { return n; // previous coeff was last non-zero coeff } while (!VP8GetBit(br, p[1])) { // sequence of zero coeffs p = prob[kBands[++n]].probas_[0]; if (n == 16) return 16; } { // non zero coeff const VP8ProbaArray* const p_ctx = &prob[kBands[n + 1]].probas_[0]; int v; if (!VP8GetBit(br, p[2])) { v = 1; p = p_ctx[1]; } else { v = GetLargeValue(br, p); p = p_ctx[2]; } out[kZigzag[n]] = VP8GetSigned(br, v) * dq[n > 0]; } } return 16; } static WEBP_INLINE uint32_t NzCodeBits(uint32_t nz_coeffs, int nz, int dc_nz) { nz_coeffs <<= 2; nz_coeffs |= (nz > 3) ? 3 : (nz > 1) ? 2 : dc_nz; return nz_coeffs; } static int ParseResiduals(VP8Decoder* const dec, VP8MB* const mb, VP8BitReader* const token_br) { VP8BandProbas (* const bands)[NUM_BANDS] = dec->proba_.bands_; const VP8BandProbas* ac_proba; VP8MBData* const block = dec->mb_data_ + dec->mb_x_; const VP8QuantMatrix* const q = &dec->dqm_[block->segment_]; int16_t* dst = block->coeffs_; VP8MB* const left_mb = dec->mb_info_ - 1; uint8_t tnz, lnz; uint32_t non_zero_y = 0; uint32_t non_zero_uv = 0; int x, y, ch; uint32_t out_t_nz, out_l_nz; int first; memset(dst, 0, 384 * sizeof(*dst)); if (!block->is_i4x4_) { // parse DC int16_t dc[16] = { 0 }; const int ctx = mb->nz_dc_ + left_mb->nz_dc_; const int nz = GetCoeffs(token_br, bands[1], ctx, q->y2_mat_, 0, dc); mb->nz_dc_ = left_mb->nz_dc_ = (nz > 0); if (nz > 1) { // more than just the DC -> perform the full transform VP8TransformWHT(dc, dst); } else { // only DC is non-zero -> inlined simplified transform int i; const int dc0 = (dc[0] + 3) >> 3; for (i = 0; i < 16 * 16; i += 16) dst[i] = dc0; } first = 1; ac_proba = bands[0]; } else { first = 0; ac_proba = bands[3]; } tnz = mb->nz_ & 0x0f; lnz = left_mb->nz_ & 0x0f; for (y = 0; y < 4; ++y) { int l = lnz & 1; uint32_t nz_coeffs = 0; for (x = 0; x < 4; ++x) { const int ctx = l + (tnz & 1); const int nz = GetCoeffs(token_br, ac_proba, ctx, q->y1_mat_, first, dst); l = (nz > first); tnz = (tnz >> 1) | (l << 7); nz_coeffs = NzCodeBits(nz_coeffs, nz, dst[0] != 0); dst += 16; } tnz >>= 4; lnz = (lnz >> 1) | (l << 7); non_zero_y = (non_zero_y << 8) | nz_coeffs; } out_t_nz = tnz; out_l_nz = lnz >> 4; for (ch = 0; ch < 4; ch += 2) { uint32_t nz_coeffs = 0; tnz = mb->nz_ >> (4 + ch); lnz = left_mb->nz_ >> (4 + ch); for (y = 0; y < 2; ++y) { int l = lnz & 1; for (x = 0; x < 2; ++x) { const int ctx = l + (tnz & 1); const int nz = GetCoeffs(token_br, bands[2], ctx, q->uv_mat_, 0, dst); l = (nz > 0); tnz = (tnz >> 1) | (l << 3); nz_coeffs = NzCodeBits(nz_coeffs, nz, dst[0] != 0); dst += 16; } tnz >>= 2; lnz = (lnz >> 1) | (l << 5); } // Note: we don't really need the per-4x4 details for U/V blocks. non_zero_uv |= nz_coeffs << (4 * ch); out_t_nz |= (tnz << 4) << ch; out_l_nz |= (lnz & 0xf0) << ch; } mb->nz_ = out_t_nz; left_mb->nz_ = out_l_nz; block->non_zero_y_ = non_zero_y; block->non_zero_uv_ = non_zero_uv; // We look at the mode-code of each block and check if some blocks have less // than three non-zero coeffs (code < 2). This is to avoid dithering flat and // empty blocks. block->dither_ = (non_zero_uv & 0xaaaa) ? 0 : q->dither_; return !(non_zero_y | non_zero_uv); // will be used for further optimization } //------------------------------------------------------------------------------ // Main loop int VP8DecodeMB(VP8Decoder* const dec, VP8BitReader* const token_br) { VP8MB* const left = dec->mb_info_ - 1; VP8MB* const mb = dec->mb_info_ + dec->mb_x_; VP8MBData* const block = dec->mb_data_ + dec->mb_x_; int skip = dec->use_skip_proba_ ? block->skip_ : 0; if (!skip) { skip = ParseResiduals(dec, mb, token_br); } else { left->nz_ = mb->nz_ = 0; if (!block->is_i4x4_) { left->nz_dc_ = mb->nz_dc_ = 0; } block->non_zero_y_ = 0; block->non_zero_uv_ = 0; } if (dec->filter_type_ > 0) { // store filter info VP8FInfo* const finfo = dec->f_info_ + dec->mb_x_; *finfo = dec->fstrengths_[block->segment_][block->is_i4x4_]; finfo->f_inner_ |= !skip; } return !token_br->eof_; } void VP8InitScanline(VP8Decoder* const dec) { VP8MB* const left = dec->mb_info_ - 1; left->nz_ = 0; left->nz_dc_ = 0; memset(dec->intra_l_, B_DC_PRED, sizeof(dec->intra_l_)); dec->mb_x_ = 0; } static int ParseFrame(VP8Decoder* const dec, VP8Io* io) { for (dec->mb_y_ = 0; dec->mb_y_ < dec->br_mb_y_; ++dec->mb_y_) { // Parse bitstream for this row. VP8BitReader* const token_br = &dec->parts_[dec->mb_y_ & (dec->num_parts_ - 1)]; if (!VP8ParseIntraModeRow(&dec->br_, dec)) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "Premature end-of-partition0 encountered."); } for (; dec->mb_x_ < dec->mb_w_; ++dec->mb_x_) { if (!VP8DecodeMB(dec, token_br)) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "Premature end-of-file encountered."); } } VP8InitScanline(dec); // Prepare for next scanline // Reconstruct, filter and emit the row. if (!VP8ProcessRow(dec, io)) { return VP8SetError(dec, VP8_STATUS_USER_ABORT, "Output aborted."); } } if (dec->mt_method_ > 0) { if (!WebPGetWorkerInterface()->Sync(&dec->worker_)) return 0; } return 1; } // Main entry point int VP8Decode(VP8Decoder* const dec, VP8Io* const io) { int ok = 0; if (dec == NULL) { return 0; } if (io == NULL) { return VP8SetError(dec, VP8_STATUS_INVALID_PARAM, "NULL VP8Io parameter in VP8Decode()."); } if (!dec->ready_) { if (!VP8GetHeaders(dec, io)) { return 0; } } assert(dec->ready_); // Finish setting up the decoding parameter. Will call io->setup(). ok = (VP8EnterCritical(dec, io) == VP8_STATUS_OK); if (ok) { // good to go. // Will allocate memory and prepare everything. if (ok) ok = VP8InitFrame(dec, io); // Main decoding loop if (ok) ok = ParseFrame(dec, io); // Exit. ok &= VP8ExitCritical(dec, io); } if (!ok) { VP8Clear(dec); return 0; } dec->ready_ = 0; return ok; } void VP8Clear(VP8Decoder* const dec) { if (dec == NULL) { return; } WebPGetWorkerInterface()->End(&dec->worker_); ALPHDelete(dec->alph_dec_); dec->alph_dec_ = NULL; WebPSafeFree(dec->mem_); dec->mem_ = NULL; dec->mem_size_ = 0; memset(&dec->br_, 0, sizeof(dec->br_)); dec->ready_ = 0; } //------------------------------------------------------------------------------