// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/hash/hash.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/btree_map.h" #include "absl/container/btree_set.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_map.h" #include "absl/container/node_hash_set.h" #include "absl/hash/hash_testing.h" #include "absl/hash/internal/spy_hash_state.h" #include "absl/meta/type_traits.h" #include "absl/numeric/int128.h" #include "absl/strings/cord_test_helpers.h" namespace { // Utility wrapper of T for the purposes of testing the `AbslHash` type erasure // mechanism. `TypeErasedValue` can be constructed with a `T`, and can // be compared and hashed. However, all hashing goes through the hashing // type-erasure framework. template class TypeErasedValue { public: TypeErasedValue() = default; TypeErasedValue(const TypeErasedValue&) = default; TypeErasedValue(TypeErasedValue&&) = default; explicit TypeErasedValue(const T& n) : n_(n) {} template friend H AbslHashValue(H hash_state, const TypeErasedValue& v) { v.HashValue(absl::HashState::Create(&hash_state)); return hash_state; } void HashValue(absl::HashState state) const { absl::HashState::combine(std::move(state), n_); } bool operator==(const TypeErasedValue& rhs) const { return n_ == rhs.n_; } bool operator!=(const TypeErasedValue& rhs) const { return !(*this == rhs); } private: T n_; }; // A TypeErasedValue refinement, for containers. It exposes the wrapped // `value_type` and is constructible from an initializer list. template class TypeErasedContainer : public TypeErasedValue { public: using value_type = typename T::value_type; TypeErasedContainer() = default; TypeErasedContainer(const TypeErasedContainer&) = default; TypeErasedContainer(TypeErasedContainer&&) = default; explicit TypeErasedContainer(const T& n) : TypeErasedValue(n) {} TypeErasedContainer(std::initializer_list init_list) : TypeErasedContainer(T(init_list.begin(), init_list.end())) {} // one-argument constructor of value type T, to appease older toolchains that // get confused by one-element initializer lists in some contexts explicit TypeErasedContainer(const value_type& v) : TypeErasedContainer(T(&v, &v + 1)) {} }; template using TypeErasedVector = TypeErasedContainer>; using absl::Hash; using absl::hash_internal::SpyHashState; template class HashValueIntTest : public testing::Test { }; TYPED_TEST_SUITE_P(HashValueIntTest); template SpyHashState SpyHash(const T& value) { return SpyHashState::combine(SpyHashState(), value); } // Helper trait to verify if T is hashable. We use absl::Hash's poison status to // detect it. template using is_hashable = std::is_default_constructible>; TYPED_TEST_P(HashValueIntTest, BasicUsage) { EXPECT_TRUE((is_hashable::value)); TypeParam n = 42; EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42})); EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0})); EXPECT_NE(SpyHash(std::numeric_limits::max()), SpyHash(std::numeric_limits::min())); } TYPED_TEST_P(HashValueIntTest, FastPath) { // Test the fast-path to make sure the values are the same. TypeParam n = 42; EXPECT_EQ(absl::Hash{}(n), absl::Hash>{}(std::tuple(n))); } REGISTER_TYPED_TEST_SUITE_P(HashValueIntTest, BasicUsage, FastPath); using IntTypes = testing::Types; INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueIntTest, IntTypes); enum LegacyEnum { kValue1, kValue2, kValue3 }; enum class EnumClass { kValue4, kValue5, kValue6 }; TEST(HashValueTest, EnumAndBool) { EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3))); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6))); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(true, false))); } TEST(HashValueTest, FloatingPoint) { EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits::infinity(), -std::numeric_limits::infinity()))); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(42., 0., -0., std::numeric_limits::infinity(), -std::numeric_limits::infinity()))); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( // Add some values with small exponent to test that NORMAL values also // append their category. .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L, 17 * static_cast(std::numeric_limits::max()), std::numeric_limits::infinity(), -std::numeric_limits::infinity()))); } TEST(HashValueTest, Pointer) { EXPECT_TRUE((is_hashable::value)); int i; int* ptr = &i; int* n = nullptr; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(&i, ptr, nullptr, ptr + 1, n))); } TEST(HashValueTest, PointerAlignment) { // We want to make sure that pointer alignment will not cause bits to be // stuck. constexpr size_t kTotalSize = 1 << 20; std::unique_ptr data(new char[kTotalSize]); constexpr size_t kLog2NumValues = 5; constexpr size_t kNumValues = 1 << kLog2NumValues; for (size_t align = 1; align < kTotalSize / kNumValues; align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) { SCOPED_TRACE(align); ASSERT_LE(align * kNumValues, kTotalSize); size_t bits_or = 0; size_t bits_and = ~size_t{}; for (size_t i = 0; i < kNumValues; ++i) { size_t hash = absl::Hash()(data.get() + i * align); bits_or |= hash; bits_and &= hash; } // Limit the scope to the bits we would be using for Swisstable. constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1; size_t stuck_bits = (~bits_or | bits_and) & kMask; EXPECT_EQ(stuck_bits, 0) << "0x" << std::hex << stuck_bits; } } TEST(HashValueTest, PairAndTuple) { EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0), std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42)))); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42), std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0), std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9), std::make_tuple(0, 0, -42)))); // Test that tuples of lvalue references work (so we need a few lvalues): int a = 0, b = 1, c = 17, d = 23; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d)))); // Test that tuples of rvalue references work: EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42), std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0), std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9), std::forward_as_tuple(0, 0, -42)))); } TEST(HashValueTest, CombineContiguousWorks) { std::vector> v1 = {std::make_tuple(1), std::make_tuple(3)}; std::vector> v2 = {std::make_tuple(1), std::make_tuple(2)}; auto vh1 = SpyHash(v1); auto vh2 = SpyHash(v2); EXPECT_NE(vh1, vh2); } struct DummyDeleter { template void operator() (T* ptr) {} }; struct SmartPointerEq { template bool operator()(const T& t, const U& u) const { return GetPtr(t) == GetPtr(u); } template static auto GetPtr(const T& t) -> decltype(&*t) { return t ? &*t : nullptr; } static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; } }; TEST(HashValueTest, SmartPointers) { EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE((is_hashable>::value)); int i, j; std::unique_ptr unique1(&i); std::unique_ptr unique2(&i); std::unique_ptr unique_other(&j); std::unique_ptr unique_null; std::shared_ptr shared1(&i, DummyDeleter()); std::shared_ptr shared2(&i, DummyDeleter()); std::shared_ptr shared_other(&j, DummyDeleter()); std::shared_ptr shared_null; // Sanity check of the Eq function. ASSERT_TRUE(SmartPointerEq{}(unique1, shared1)); ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other)); ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr)); ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::forward_as_tuple(&i, nullptr, // unique1, unique2, unique_null, // absl::make_unique(), // shared1, shared2, shared_null, // std::make_shared()), SmartPointerEq{})); } TEST(HashValueTest, FunctionPointer) { using Func = int (*)(); EXPECT_TRUE(is_hashable::value); Func p1 = [] { return 2; }, p2 = [] { return 1; }; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(p1, p2, nullptr))); } struct WrapInTuple { template std::tuple operator()(const T& t) const { return std::make_tuple(7, t, 0xdeadbeef); } }; absl::Cord FlatCord(absl::string_view sv) { absl::Cord c(sv); c.Flatten(); return c; } absl::Cord FragmentedCord(absl::string_view sv) { if (sv.size() < 2) { return absl::Cord(sv); } size_t halfway = sv.size() / 2; std::vector parts = {sv.substr(0, halfway), sv.substr(halfway)}; return absl::MakeFragmentedCord(parts); } TEST(HashValueTest, Strings) { EXPECT_TRUE((is_hashable::value)); const std::string small = "foo"; const std::string dup = "foofoo"; const std::string large = std::string(2048, 'x'); // multiple of chunk size const std::string huge = std::string(5000, 'a'); // not a multiple EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( // std::string(), absl::string_view(), absl::Cord(), // std::string(""), absl::string_view(""), absl::Cord(""), // std::string(small), absl::string_view(small), absl::Cord(small), // std::string(dup), absl::string_view(dup), absl::Cord(dup), // std::string(large), absl::string_view(large), absl::Cord(large), // std::string(huge), absl::string_view(huge), FlatCord(huge), // FragmentedCord(huge)))); // Also check that nested types maintain the same hash. const WrapInTuple t{}; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( // t(std::string()), t(absl::string_view()), t(absl::Cord()), // t(std::string("")), t(absl::string_view("")), t(absl::Cord("")), // t(std::string(small)), t(absl::string_view(small)), // t(absl::Cord(small)), // t(std::string(dup)), t(absl::string_view(dup)), t(absl::Cord(dup)), // t(std::string(large)), t(absl::string_view(large)), // t(absl::Cord(large)), // t(std::string(huge)), t(absl::string_view(huge)), // t(FlatCord(huge)), t(FragmentedCord(huge))))); // Make sure that hashing a `const char*` does not use its string-value. EXPECT_NE(SpyHash(static_cast("ABC")), SpyHash(absl::string_view("ABC"))); } TEST(HashValueTest, WString) { EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"), std::wstring(L"Some other different string"), std::wstring(L"Iñtërnâtiônàlizætiøn")))); } TEST(HashValueTest, U16String) { EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"), std::u16string(u"Some other different string"), std::u16string(u"Iñtërnâtiônàlizætiøn")))); } TEST(HashValueTest, U32String) { EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"), std::u32string(U"Some other different string"), std::u32string(U"Iñtërnâtiônàlizætiøn")))); } TEST(HashValueTest, StdArray) { EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(std::array{}, std::array{{0, 23, 42}}))); } TEST(HashValueTest, StdBitset) { EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"), std::bitset<2>("11")})); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()})); constexpr int kNumBits = 256; std::array bit_strings; bit_strings.fill(std::string(kNumBits, '1')); bit_strings[1][0] = '0'; bit_strings[2][1] = '0'; bit_strings[3][kNumBits / 3] = '0'; bit_strings[4][kNumBits - 2] = '0'; bit_strings[5][kNumBits - 1] = '0'; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( {std::bitset(bit_strings[0].c_str()), std::bitset(bit_strings[1].c_str()), std::bitset(bit_strings[2].c_str()), std::bitset(bit_strings[3].c_str()), std::bitset(bit_strings[4].c_str()), std::bitset(bit_strings[5].c_str())})); } // namespace // Dummy type with unordered equality and hashing semantics. This preserves // input order internally, and is used below to ensure we get test coverage // for equal sequences with different iteraton orders. template class UnorderedSequence { public: UnorderedSequence() = default; template UnorderedSequence(std::initializer_list l) : values_(l.begin(), l.end()) {} template ::value, bool>::type = true> UnorderedSequence(ForwardIterator begin, ForwardIterator end) : values_(begin, end) {} // one-argument constructor of value type T, to appease older toolchains that // get confused by one-element initializer lists in some contexts explicit UnorderedSequence(const T& v) : values_(&v, &v + 1) {} using value_type = T; size_t size() const { return values_.size(); } typename std::vector::const_iterator begin() const { return values_.begin(); } typename std::vector::const_iterator end() const { return values_.end(); } friend bool operator==(const UnorderedSequence& lhs, const UnorderedSequence& rhs) { return lhs.size() == rhs.size() && std::is_permutation(lhs.begin(), lhs.end(), rhs.begin()); } friend bool operator!=(const UnorderedSequence& lhs, const UnorderedSequence& rhs) { return !(lhs == rhs); } template friend H AbslHashValue(H h, const UnorderedSequence& u) { return H::combine(H::combine_unordered(std::move(h), u.begin(), u.end()), u.size()); } private: std::vector values_; }; template class HashValueSequenceTest : public testing::Test { }; TYPED_TEST_SUITE_P(HashValueSequenceTest); TYPED_TEST_P(HashValueSequenceTest, BasicUsage) { EXPECT_TRUE((is_hashable::value)); using IntType = typename TypeParam::value_type; auto a = static_cast(0); auto b = static_cast(23); auto c = static_cast(42); std::vector exemplars = { TypeParam(), TypeParam(), TypeParam{a, b, c}, TypeParam{a, c, b}, TypeParam{c, a, b}, TypeParam{a}, TypeParam{a, a}, TypeParam{a, a, a}, TypeParam{a, a, b}, TypeParam{a, b, a}, TypeParam{b, a, a}, TypeParam{a, b}, TypeParam{b, c}}; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); } REGISTER_TYPED_TEST_SUITE_P(HashValueSequenceTest, BasicUsage); using IntSequenceTypes = testing::Types< std::deque, std::forward_list, std::list, std::vector, std::vector, TypeErasedContainer>, std::set, std::multiset, UnorderedSequence, TypeErasedContainer>, std::unordered_set, std::unordered_multiset, absl::flat_hash_set, absl::node_hash_set, absl::btree_set>; INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueSequenceTest, IntSequenceTypes); template class HashValueNestedSequenceTest : public testing::Test {}; TYPED_TEST_SUITE_P(HashValueNestedSequenceTest); TYPED_TEST_P(HashValueNestedSequenceTest, BasicUsage) { using T = TypeParam; using V = typename T::value_type; std::vector exemplars = { // empty case T{}, // sets of empty sets T{V{}}, T{V{}, V{}}, T{V{}, V{}, V{}}, // multisets of different values T{V{1}}, T{V{1, 1}, V{1, 1}}, T{V{1, 1, 1}, V{1, 1, 1}, V{1, 1, 1}}, // various orderings of same nested sets T{V{}, V{1, 2}}, T{V{}, V{2, 1}}, T{V{1, 2}, V{}}, T{V{2, 1}, V{}}, // various orderings of various nested sets, case 2 T{V{1, 2}, V{3, 4}}, T{V{1, 2}, V{4, 3}}, T{V{1, 3}, V{2, 4}}, T{V{1, 3}, V{4, 2}}, T{V{1, 4}, V{2, 3}}, T{V{1, 4}, V{3, 2}}, T{V{2, 3}, V{1, 4}}, T{V{2, 3}, V{4, 1}}, T{V{2, 4}, V{1, 3}}, T{V{2, 4}, V{3, 1}}, T{V{3, 4}, V{1, 2}}, T{V{3, 4}, V{2, 1}}}; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); } REGISTER_TYPED_TEST_SUITE_P(HashValueNestedSequenceTest, BasicUsage); template using TypeErasedSet = TypeErasedContainer>; using NestedIntSequenceTypes = testing::Types< std::vector>, std::vector>, std::vector>, UnorderedSequence>, UnorderedSequence>, UnorderedSequence>, TypeErasedSet>, TypeErasedSet>, TypeErasedSet>>; INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueNestedSequenceTest, NestedIntSequenceTypes); // Private type that only supports AbslHashValue to make sure our chosen hash // implementation is recursive within absl::Hash. // It uses std::abs() on the value to provide different bitwise representations // of the same logical value. struct Private { int i; template friend H AbslHashValue(H h, Private p) { return H::combine(std::move(h), std::abs(p.i)); } friend bool operator==(Private a, Private b) { return std::abs(a.i) == std::abs(b.i); } friend std::ostream& operator<<(std::ostream& o, Private p) { return o << p.i; } }; // Test helper for combine_piecewise_buffer. It holds a string_view to the // buffer-to-be-hashed. Its AbslHashValue specialization will split up its // contents at the character offsets requested. class PiecewiseHashTester { public: // Create a hash view of a buffer to be hashed contiguously. explicit PiecewiseHashTester(absl::string_view buf) : buf_(buf), piecewise_(false), split_locations_() {} // Create a hash view of a buffer to be hashed piecewise, with breaks at the // given locations. PiecewiseHashTester(absl::string_view buf, std::set split_locations) : buf_(buf), piecewise_(true), split_locations_(std::move(split_locations)) {} template friend H AbslHashValue(H h, const PiecewiseHashTester& p) { if (!p.piecewise_) { return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size()); } absl::hash_internal::PiecewiseCombiner combiner; if (p.split_locations_.empty()) { h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size()); return combiner.finalize(std::move(h)); } size_t begin = 0; for (size_t next : p.split_locations_) { absl::string_view chunk = p.buf_.substr(begin, next - begin); h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size()); begin = next; } absl::string_view last_chunk = p.buf_.substr(begin); if (!last_chunk.empty()) { h = combiner.add_buffer(std::move(h), last_chunk.data(), last_chunk.size()); } return combiner.finalize(std::move(h)); } private: absl::string_view buf_; bool piecewise_; std::set split_locations_; }; // Dummy object that hashes as two distinct contiguous buffers, "foo" followed // by "bar" struct DummyFooBar { template friend H AbslHashValue(H h, const DummyFooBar&) { const char* foo = "foo"; const char* bar = "bar"; h = H::combine_contiguous(std::move(h), foo, 3); h = H::combine_contiguous(std::move(h), bar, 3); return h; } }; TEST(HashValueTest, CombinePiecewiseBuffer) { absl::Hash hash; // Check that hashing an empty buffer through the piecewise API works. EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {}))); // Similarly, small buffers should give consistent results EXPECT_EQ(hash(PiecewiseHashTester("foobar")), hash(PiecewiseHashTester("foobar", {}))); EXPECT_EQ(hash(PiecewiseHashTester("foobar")), hash(PiecewiseHashTester("foobar", {3}))); // But hashing "foobar" in pieces gives a different answer than hashing "foo" // contiguously, then "bar" contiguously. EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})), absl::Hash()(DummyFooBar{})); // Test hashing a large buffer incrementally, broken up in several different // ways. Arrange for breaks on and near the stride boundaries to look for // off-by-one errors in the implementation. // // This test is run on a buffer that is a multiple of the stride size, and one // that isn't. for (size_t big_buffer_size : {1024 * 2 + 512, 1024 * 3}) { SCOPED_TRACE(big_buffer_size); std::string big_buffer; for (int i = 0; i < big_buffer_size; ++i) { // Arbitrary string big_buffer.push_back(32 + (i * (i / 3)) % 64); } auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer)); const int possible_breaks = 9; size_t breaks[possible_breaks] = {1, 512, 1023, 1024, 1025, 1536, 2047, 2048, 2049}; for (unsigned test_mask = 0; test_mask < (1u << possible_breaks); ++test_mask) { SCOPED_TRACE(test_mask); std::set break_locations; for (int j = 0; j < possible_breaks; ++j) { if (test_mask & (1u << j)) { break_locations.insert(breaks[j]); } } EXPECT_EQ( hash(PiecewiseHashTester(big_buffer, std::move(break_locations))), big_buffer_hash); } } } TEST(HashValueTest, PrivateSanity) { // Sanity check that Private is working as the tests below expect it to work. EXPECT_TRUE(is_hashable::value); EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1})); EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1})); } TEST(HashValueTest, Optional) { EXPECT_TRUE(is_hashable>::value); using O = absl::optional; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}}))); } TEST(HashValueTest, Variant) { using V = absl::variant; EXPECT_TRUE(is_hashable::value); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD")))); #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ struct S {}; EXPECT_FALSE(is_hashable>::value); #endif } template class HashValueAssociativeMapTest : public testing::Test {}; TYPED_TEST_SUITE_P(HashValueAssociativeMapTest); TYPED_TEST_P(HashValueAssociativeMapTest, BasicUsage) { using M = TypeParam; using V = typename M::value_type; std::vector exemplars{M{}, M{V{0, "foo"}}, M{V{1, "foo"}}, M{V{0, "bar"}}, M{V{1, "bar"}}, M{V{0, "foo"}, V{42, "bar"}}, M{V{42, "bar"}, V{0, "foo"}}, M{V{1, "foo"}, V{42, "bar"}}, M{V{1, "foo"}, V{43, "bar"}}, M{V{1, "foo"}, V{43, "baz"}}}; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); } REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMapTest, BasicUsage); using AssociativeMapTypes = testing::Types< std::map, std::unordered_map, absl::flat_hash_map, absl::node_hash_map, absl::btree_map, UnorderedSequence>>; INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMapTest, AssociativeMapTypes); template class HashValueAssociativeMultimapTest : public testing::Test {}; TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest); TYPED_TEST_P(HashValueAssociativeMultimapTest, BasicUsage) { using MM = TypeParam; using V = typename MM::value_type; std::vector exemplars{MM{}, MM{V{0, "foo"}}, MM{V{1, "foo"}}, MM{V{0, "bar"}}, MM{V{1, "bar"}}, MM{V{0, "foo"}, V{0, "bar"}}, MM{V{0, "bar"}, V{0, "foo"}}, MM{V{0, "foo"}, V{42, "bar"}}, MM{V{1, "foo"}, V{42, "bar"}}, MM{V{1, "foo"}, V{1, "foo"}, V{43, "bar"}}, MM{V{1, "foo"}, V{43, "bar"}, V{1, "foo"}}, MM{V{1, "foo"}, V{43, "baz"}}}; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); } REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest, BasicUsage); using AssociativeMultimapTypes = testing::Types, std::unordered_multimap>; INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMultimapTest, AssociativeMultimapTypes); TEST(HashValueTest, ReferenceWrapper) { EXPECT_TRUE(is_hashable>::value); Private p1{1}, p10{10}; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( p1, p10, std::ref(p1), std::ref(p10), std::cref(p1), std::cref(p10)))); EXPECT_TRUE(is_hashable>::value); int one = 1, ten = 10; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( one, ten, std::ref(one), std::ref(ten), std::cref(one), std::cref(ten)))); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( std::make_tuple(std::tuple>(std::ref(one)), std::tuple>(std::ref(ten)), std::tuple(one), std::tuple(ten)))); } template struct IsHashCallable : std::false_type {}; template struct IsHashCallable>()( std::declval()))>> : std::true_type {}; template struct IsAggregateInitializable : std::false_type {}; template struct IsAggregateInitializable> : std::true_type {}; TEST(IsHashableTest, ValidHash) { EXPECT_TRUE((is_hashable::value)); EXPECT_TRUE(std::is_default_constructible>::value); EXPECT_TRUE(std::is_copy_constructible>::value); EXPECT_TRUE(std::is_move_constructible>::value); EXPECT_TRUE(absl::is_copy_assignable>::value); EXPECT_TRUE(absl::is_move_assignable>::value); EXPECT_TRUE(IsHashCallable::value); EXPECT_TRUE(IsAggregateInitializable>::value); } #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ TEST(IsHashableTest, PoisonHash) { struct X {}; EXPECT_FALSE((is_hashable::value)); EXPECT_FALSE(std::is_default_constructible>::value); EXPECT_FALSE(std::is_copy_constructible>::value); EXPECT_FALSE(std::is_move_constructible>::value); EXPECT_FALSE(absl::is_copy_assignable>::value); EXPECT_FALSE(absl::is_move_assignable>::value); EXPECT_FALSE(IsHashCallable::value); #if !defined(__GNUC__) || __GNUC__ < 9 // This doesn't compile on GCC 9. EXPECT_FALSE(IsAggregateInitializable>::value); #endif } #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ // Hashable types // // These types exist simply to exercise various AbslHashValue behaviors, so // they are named by what their AbslHashValue overload does. struct NoOp { template friend HashCode AbslHashValue(HashCode h, NoOp n) { return h; } }; struct EmptyCombine { template friend HashCode AbslHashValue(HashCode h, EmptyCombine e) { return HashCode::combine(std::move(h)); } }; template struct CombineIterative { template friend HashCode AbslHashValue(HashCode h, CombineIterative c) { for (int i = 0; i < 5; ++i) { h = HashCode::combine(std::move(h), Int(i)); } return h; } }; template struct CombineVariadic { template friend HashCode AbslHashValue(HashCode h, CombineVariadic c) { return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3), Int(4)); } }; enum class InvokeTag { kUniquelyRepresented, kHashValue, #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ kLegacyHash, #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ kStdHash, kNone }; template using InvokeTagConstant = std::integral_constant; template struct MinTag; template struct MinTag : MinTag<(a < b ? a : b), Tags...> {}; template struct MinTag : InvokeTagConstant {}; template struct CustomHashType { explicit CustomHashType(size_t val) : value(val) {} size_t value; }; template struct EnableIfContained : std::enable_if...>::value> {}; template < typename H, InvokeTag... Tags, typename = typename EnableIfContained::type> H AbslHashValue(H state, CustomHashType t) { static_assert(MinTag::value == InvokeTag::kHashValue, ""); return H::combine(std::move(state), t.value + static_cast(InvokeTag::kHashValue)); } } // namespace namespace absl { ABSL_NAMESPACE_BEGIN namespace hash_internal { template struct is_uniquely_represented< CustomHashType, typename EnableIfContained::type> : std::true_type {}; } // namespace hash_internal ABSL_NAMESPACE_END } // namespace absl #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE { template struct hash> { template ::type> size_t operator()(CustomHashType t) const { static_assert(MinTag::value == InvokeTag::kLegacyHash, ""); return t.value + static_cast(InvokeTag::kLegacyHash); } }; } // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ namespace std { template // NOLINT struct hash> { template ::type> size_t operator()(CustomHashType t) const { static_assert(MinTag::value == InvokeTag::kStdHash, ""); return t.value + static_cast(InvokeTag::kStdHash); } }; } // namespace std namespace { template void TestCustomHashType(InvokeTagConstant, T...) { using type = CustomHashType; SCOPED_TRACE(testing::PrintToString(std::vector{T::value...})); EXPECT_TRUE(is_hashable()); EXPECT_TRUE(is_hashable()); EXPECT_TRUE(is_hashable()); const size_t offset = static_cast(std::min({T::value...})); EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset})); } void TestCustomHashType(InvokeTagConstant) { #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ // is_hashable is false if we don't support any of the hooks. using type = CustomHashType<>; EXPECT_FALSE(is_hashable()); EXPECT_FALSE(is_hashable()); EXPECT_FALSE(is_hashable()); #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ } template void TestCustomHashType(InvokeTagConstant tag, T... t) { constexpr auto next = static_cast(static_cast(Tag) + 1); TestCustomHashType(InvokeTagConstant(), tag, t...); TestCustomHashType(InvokeTagConstant(), t...); } TEST(HashTest, CustomHashType) { TestCustomHashType(InvokeTagConstant()); } TEST(HashTest, NoOpsAreEquivalent) { EXPECT_EQ(Hash()({}), Hash()({})); EXPECT_EQ(Hash()({}), Hash()({})); } template class HashIntTest : public testing::Test { }; TYPED_TEST_SUITE_P(HashIntTest); TYPED_TEST_P(HashIntTest, BasicUsage) { EXPECT_NE(Hash()({}), Hash()(0)); EXPECT_NE(Hash()({}), Hash()(std::numeric_limits::max())); if (std::numeric_limits::min() != 0) { EXPECT_NE(Hash()({}), Hash()(std::numeric_limits::min())); } EXPECT_EQ(Hash>()({}), Hash>()({})); } REGISTER_TYPED_TEST_SUITE_P(HashIntTest, BasicUsage); using IntTypes = testing::Types; INSTANTIATE_TYPED_TEST_SUITE_P(My, HashIntTest, IntTypes); struct StructWithPadding { char c; int i; template friend H AbslHashValue(H hash_state, const StructWithPadding& s) { return H::combine(std::move(hash_state), s.c, s.i); } }; static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int), "StructWithPadding doesn't have padding"); static_assert(std::is_standard_layout::value, ""); // This check has to be disabled because libstdc++ doesn't support it. // static_assert(std::is_trivially_constructible::value, ""); template struct ArraySlice { T* begin; T* end; template friend H AbslHashValue(H hash_state, const ArraySlice& slice) { for (auto t = slice.begin; t != slice.end; ++t) { hash_state = H::combine(std::move(hash_state), *t); } return hash_state; } }; TEST(HashTest, HashNonUniquelyRepresentedType) { // Create equal StructWithPadding objects that are known to have non-equal // padding bytes. static const size_t kNumStructs = 10; unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)]; std::memset(buffer1, 0, sizeof(buffer1)); auto* s1 = reinterpret_cast(buffer1); unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)]; std::memset(buffer2, 255, sizeof(buffer2)); auto* s2 = reinterpret_cast(buffer2); for (int i = 0; i < kNumStructs; ++i) { SCOPED_TRACE(i); s1[i].c = s2[i].c = '0' + i; s1[i].i = s2[i].i = i; ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding), buffer2 + i * sizeof(StructWithPadding), sizeof(StructWithPadding)) == 0) << "Bug in test code: objects do not have unequal" << " object representations"; } EXPECT_EQ(Hash()(s1[0]), Hash()(s2[0])); EXPECT_EQ(Hash>()({s1, s1 + kNumStructs}), Hash>()({s2, s2 + kNumStructs})); } TEST(HashTest, StandardHashContainerUsage) { std::unordered_map> map = {{0, "foo"}, {42, "bar"}}; EXPECT_NE(map.find(0), map.end()); EXPECT_EQ(map.find(1), map.end()); EXPECT_NE(map.find(0u), map.end()); } struct ConvertibleFromNoOp { ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit) template friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) { return H::combine(std::move(hash_state), 1); } }; TEST(HashTest, HeterogeneousCall) { EXPECT_NE(Hash()(NoOp()), Hash()(NoOp())); } TEST(IsUniquelyRepresentedTest, SanityTest) { using absl::hash_internal::is_uniquely_represented; EXPECT_TRUE(is_uniquely_represented::value); EXPECT_TRUE(is_uniquely_represented::value); EXPECT_FALSE(is_uniquely_represented::value); EXPECT_FALSE(is_uniquely_represented::value); } struct IntAndString { int i; std::string s; template friend H AbslHashValue(H hash_state, IntAndString int_and_string) { return H::combine(std::move(hash_state), int_and_string.s, int_and_string.i); } }; TEST(HashTest, SmallValueOn64ByteBoundary) { Hash()(IntAndString{0, std::string(63, '0')}); } TEST(HashTest, TypeErased) { EXPECT_TRUE((is_hashable>::value)); EXPECT_TRUE((is_hashable, int>>::value)); EXPECT_EQ(SpyHash(TypeErasedValue(7)), SpyHash(size_t{7})); EXPECT_NE(SpyHash(TypeErasedValue(7)), SpyHash(size_t{13})); EXPECT_EQ(SpyHash(std::make_pair(TypeErasedValue(7), 17)), SpyHash(std::make_pair(size_t{7}, 17))); absl::flat_hash_set> ss = {{1, 2}, {3, 4}}; TypeErasedContainer>> es = { absl::flat_hash_set{1, 2}, {3, 4}}; absl::flat_hash_set>> se = { {1, 2}, {3, 4}}; EXPECT_EQ(SpyHash(ss), SpyHash(es)); EXPECT_EQ(SpyHash(ss), SpyHash(se)); } struct ValueWithBoolConversion { operator bool() const { return false; } int i; }; } // namespace namespace std { template <> struct hash { size_t operator()(ValueWithBoolConversion v) { return v.i; } }; } // namespace std namespace { TEST(HashTest, DoesNotUseImplicitConversionsToBool) { EXPECT_NE(absl::Hash()(ValueWithBoolConversion{0}), absl::Hash()(ValueWithBoolConversion{1})); } TEST(HashOf, MatchesHashForSingleArgument) { std::string s = "forty two"; int i = 42; double d = 42.0; std::tuple t{4, 2}; EXPECT_EQ(absl::HashOf(s), absl::Hash{}(s)); EXPECT_EQ(absl::HashOf(i), absl::Hash{}(i)); EXPECT_EQ(absl::HashOf(d), absl::Hash{}(d)); EXPECT_EQ(absl::HashOf(t), (absl::Hash>{}(t))); } TEST(HashOf, MatchesHashOfTupleForMultipleArguments) { std::string hello = "hello"; std::string world = "world"; EXPECT_EQ(absl::HashOf(), absl::HashOf(std::make_tuple())); EXPECT_EQ(absl::HashOf(hello), absl::HashOf(std::make_tuple(hello))); EXPECT_EQ(absl::HashOf(hello, world), absl::HashOf(std::make_tuple(hello, world))); } template std::true_type HashOfExplicitParameter(decltype(absl::HashOf(0))) { return {}; } template std::false_type HashOfExplicitParameter(size_t) { return {}; } TEST(HashOf, CantPassExplicitTemplateParameters) { EXPECT_FALSE(HashOfExplicitParameter(0)); } } // namespace